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Abstract. In this paper we study the emergence and development of roll waves in two-layer
fluid flow in a Hele-Shaw cell. We propose the mathematical model of such flow and define the
conditions of transition from stable state to instability in the form of the roll waves. We find
out the physical parameters of flows at which the roll waves exist. A linear stability analysis
and the Whitham criterion of roll waves existence are used for solving the problem and arrive
to identical conclusions on depths of upper and lower layers at which violation of flow stability
occurs. The numerical calculations for the obtained mathematical model at found ratios of
densities, viscosities and depths of layers are performed. They confirm development of the roll
waves of finite amplitude from small oscillations of the interface.

1. Introduction
A wide class of inhomogeneous fluid flows in long channels allow arising nonlinear regime leading
to roll waves. This regime is a quasi periodic channel flow, in which smooth regions of flow are
separated by hydraulic jumps. A feature of these flows is a transition from sub-critical flow to
supercritical one in a coordinate system moving with the wave. For the first time roll waves were
described by R. Dressler [1] in 1949. He found out that a class of travelling waves for shallow
water equations consisted of periodic discontinuous solutions. This flow is easy to reproduce
experimentally in natural or laboratory conditions. Despite of the long history of roll waves
study, there are many open questions. For example it is interested to know how the roll waves
arise and develop from small perturbations of interface of two-layer flow under lid. The roll
waves change stable stationary flow and can lead to slug regime. That is why their study has a
practical value. Different theoretical and experimental aspects of study of roll waves in liquids
are considered in monograph [2] and papers [3, 4, 5]. A description and nonlinear analysis of
roll waves in the framework of Burgers, Sen-Venane and Kuramoto–Sivashinsky equations can
be found in [6, 7].

The mathematical model describing the motion of inhomogeneous immiscible fluid in a Hele-
Shaw cell is proposed in recent paper [8]. Moreover, different simple modifications of layered
flows are considered in that paper. Now we pay our attention to the study of two-layer flows of
fluid and modelling of roll waves. A linear stability analysis is provided for two-layer Hele-Shaw
flows. Values of physical parameters are found out for the development of flow instabilities.
Velocities of propagation of nonlinear perturbations are defined and hyperbolicity conditions
are formulated. Critical parameters and depths, at which the transition to roll wave begins,
are found using the Whitham criterion [9]. A numerical modelling of perturbation development
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on the interface is provided. A comparison of conditions of stability violation with numerical
results is carried out.

2. Mathematical model of inhomogeneous Hele-Shaw flow
A Hele-Shaw cell is the area between two parallel plates with a small gap between them.
Equations of motion of viscous incompressible liquid in the Hele-Shaw cell have the form

ρ(vt + (v · ∇)v) +∇p = µvzz + ρg, ∇ · v = 0. (1)

Here x = (x, y, z) is the coordinate vector, t is the time, v = (u, v, w) is the velocity vector, p is
the pressure, ρ is the density, µ is the viscosity and g = (0,−g, 0) is the acceleration of gravity
vector. The operator ∇ is calculated with respect to the coordinate vector. The characteristic
sizes of cell (L,H) in the x and y direction, respectively, are significantly higher than the cell
gap a. That is why the summands vxx and vyy vanish in the momentum equations. They are
negligible compared to vzz.

We consider the velocity field in the form

u =
3

2

(
1−

(2z

a

)2)
u′(t, x, y), v =

3

2

(
1−

(2z

a

)2)
v′(t, x, y), w = 0.

It provides the fulfilment of the no-slip conditions on the cell walls z = ±a/2. We also assume
that the function p does not depend on z. Integrating equations (1) from −a/2 to a/2 leads to
the system

ρ(ut + β(uux + vuy)) + px = −µu,
ρ(vt + β(uvx + vvy)) + py = −µv − ρg,
ux + vy = 0.

(2)

The primes are omitted. Here and below µ denotes the modified fluid viscosity 12µ/a2. The
coefficient β is equal to 6/5. Listed above simplifications are connected with the inequalities
a << L, a << H and often used for modelling of Hele-Shaw flows [10, 11]. We assume that the
horizontal size L of the cell is much more than its depth H, i.e. H/L = ε << 1. Supposing that

t→ ε−1t, x→ ε−1x, v → εv, µ→ εµ

and omitting all terms of order ε2 we have the long-wave approximation model

ρ(ut + β(uux + vuy)) + px = −µu, py = −gρ,

ux + vy = 0; v
∣∣
y=0

= v
∣∣
y=H

= 0.
(3)

Here y = 0 and y = H are the lower and upper boundaries in the y-direction.

2.1. Equations of two-layer flow
Let us consider the class of layered flows with the depths hi(t, x), the velocities ui(t, x),
the constant densities ρi and the viscosities µi in the layers i = 1, 2 (index “1” is for the
lower layer and “2” is for the upper one). We assume that the cell height is constant, i.e.
h1 + h2 = H = const. We find the pressure from the second equation of (3) and take into
account the kinematic condition on the interface. After some amount of calculations we arrive
at the system describing the two-layer flow of viscous liquid in a Hele-Shaw cell [8]

ρ1
(
u1t + βu1u1x + gh1x

)
+ gρ2h2x + p0x = −µ1u1,

ρ2
(
u2t + βu2u2x

)
+ p0x = −µ2u2,

h1t + (u1h1)x = 0, h2t + (u2h2)x = 0,

(4)
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where p0(t, x) is the pressure on an upper lid.
Further we use the following notations for the unknown functions, the density ratio and the

viscosity ratio in the layers

u = u1, w = u2, h = h1, ρ = ρ2/ρ1, µ = µ1/µ2.

Taking into consideration that h2 = H − h we multiply the second equation of (4) by ρ and
subtract from the first one. As a result we obtain the system

(u− ρw)t + β(uux − ρwwx) + bhx =
µ2
ρ1

(
w − µu

)
, ht + (uh)x = 0,

where b = g(1− ρ). According to the last equations of (4) the flow rate in the channel does not
depend on x. We consider flows with known constant flow rate

hu+ (H − h)w = H um = const,

where um is the average flow velocity. We can take H = 1, b = 1 after using corresponding
dimensionless variables. The additional scaling of independent variables helps to exclude the
parameter µ2/ρ1. Summarizing given assumptions we take the equations for specification of the
depths and velocities in the form

(u− ρw)t + β(uux − ρwwx) + hx = w − µu,
ht + (uh)x = 0, hu+ (1− h)w = um.

(5)

Further theoretical analysis and modelling of the roll waves are provided in the framework of
equations (5).

3. Linear stability analysis
Let us consider the constant solution of system (5) u = u0, w = w0, h = h0. We should
emphasize that u0, w0 and h0 have to satisfy the equations

w0 = µu0, h0u0 + (1− h0)w0 = um. (6)

The velocity components and depth of perturbed flow deviate from the basis flow weakly. That
is why these values take the form

h = h0 + h̃, u = u0 + ũ, w = w0 + w̃. (7)

Here h̃, ũ, w̃ are the functions of all independent variables.
Substitution of solution (7) into equations (5) and linearization of the system obtained give

the equations for small perturbations

(u− ρw)t + β(u0ux − ρw0wx) + hx = w − µu,
ht + u0hx + h0ux = 0, h0u+ (1− h0)w + (u0 − w0)h = 0.

(8)

The tildes are omitted. A solution of these equations is sought in the form

(h, u, w) = (ĥ, û, ŵ) exp(ik(x− ct)), (9)

where c is the phase velocity, k > 0 is the wave number, i is the imaginary unit.
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Figure 1. Imaginary parts of solutions of equation (10) at β = 1.2, um = 0.3, µ = 0.2 and
ρ = 0.8. They correspond to stable flow at h0 = 0.5 (a) and unstable flow at h0 = 0.05 (b).

Substituting anzats (9) into equations (8) and eliminating û and ŵ with the help of ĥ by the
formulas

û = −u0 − c
h0

ĥ, ŵ =
w0 − c
1− h0

ĥ

we obtain the dispersion relation

c2 − (β + 1)(1− (1− ρµ)h0)u0 − ium/(ku0)
1− (1− ρ)h0

c+

+
(1− (1− ρµ2)h0)u20β − (1− h0)h0 − iw0/k

1− (1− ρ)h0
= 0.

(10)

This relation should be fulfilled for constructing a non-trivial solution of equations (8) in form (9).
Here the velocities of the basic stream u0 and w0 depend on the depth h0 only with respect to
conditions (6) by the formulas

w0 = µu0, u0 =
um

µ+ (1− µ)h0
.

According to classical linear stability theory [12] the flow under study is stable if Im c < 0
(c = c(k) is the root of the dispersion relation). The curves Im c(k) are shown in Fig. 1. Here
c = c(k) are the branches of solution of quadratic equation (10) at β = 1.2, um = 0.3, µ = 0.2,
ρ = 0.8 and different values of depth h0 of the lower layer in the basic flow (h0 = 0.5 and
h0 = 0.05). It can be seen from Fig. 1 (a) that the basic flow is stable when the values of h0
are close to half of channel width. A development of instability is possible when one of the
layers is thin enough at a fixed average velocity, density ratio and viscosity ratio. It is shown in
Fig. 1 (b).

In the following sections we demonstrate that proposed linear analysis is in a good agreement
with the Whitham conditions of roll waves existence and with numerical experiments.

4. Characteristics of equations (5). The Whitham conditions
Using the last equation of (5) we eliminate the velocity in the lower layer

w =
um − uh

1− h
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and introduce the equations of motion in the form

Ut + AUx = F,

where U = (u, h)T is the vector of unknowns, F = (F, 0)T is the right part. The matrix of
coefficients takes the form

A =

(
M1 M2

h u

)
.

Values M1, M2 and F are the following

M1 =
((1− h)β − ρh)u+ (β + 1)ρhw

1− (1− ρ)h
, M2 =

1− h− (u− w)(u− βw)ρ

1− (1− ρ)h
,

F =
(w − µu)(1− h)

1− (1− ρ)h
.

Eigenvalues λ± of matrix A have the form

λ± =
1

2

(
M1 + u±

√
(M1 + u)2 − 4(uM1 − hM2)

)
and define the velocities of characteristics propagation (dx/dt = λ±). It is necessary to note that
equations (5) generate a mixed type system. When the liquid physical parameters are arbitrary,
the characteristics λ± can be complex. A development of long-wave instability is possible beyond
of the interval of system hyperbolicity. The statement of Cauchy problem requires an additional
analysis and justification [2].

Together with equations (5) we consider more simple kinematic model, in which the inertial
effects are not taken into account. Then the first equation in (5) is replaced by the condition
w = µu. So we suppose that the flow rate is constant and the velocity u can be performed with
the help of the lower layer of depth h. Make allowance for all aforesaid, we write the kinematic
model as one equation

∂h

∂t
+
∂f(h)

∂x
= 0, f(h) =

umh

µ+ (1− µ)h
. (11)

The velocity of characteristic of model (11) is

λ̂ = f ′(h) =
µum

(µ+ (1− µ)h)2
.

With respect to the Whitham criterion [9], the roll waves exist in the intervals, in which one
of inequalities is valid

λ̂ ≥ λ+ or λ̂ ≤ λ−. (12)

In addition, the solution of equations (5) should not cross over the domain of hyperbolicity.
Therefore, a correct statement of Cauchy problem requires not to pass beyond the intersection
point of the characteristics λ+ and λ−.

Characteristics λ± and λ̂ for different average velocity um, density ratio ρ and viscosity ratio
µ are given in Fig. 2. For all cases β = 1.2. For constructing the dependencies λ = λ±(h) we
use the relation u = f(h)/h. Fig. 2 (a) shows that the Whitham criterion (12) is fulfilled for
small values of h. Furthermore, the hyperbolicity domain covers the whole interval of depths
h ∈ (0, 1). It is necessary to note that the obtained interval for roll waves existence is in a good
agreement with the linear stability analysis discussed in the previous section. We can see from
both Fig. 1 (b) and Fig. 2 (a) that the instability arises at small depth of the lower layer.
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Figure 2. Velocities of characteristics λ± and λ̂ (curves 1, 2 and 3) depending on h at um = 0.3,
ρ = 0.8, µ = 0.2 (a) and at um = 2, ρ = 0.02, µ = 2 (b).

The values for constructing velocities of characteristics in Fig. 2 (b) correspond to gas-liquid

media. In this case the Whitham criterion λ̂ ≥ λ+ is valid for big enough h. Moreover, the
hyperbolicity conditions are kept in not the whole flow region. It requires a more detailed analysis
of problem correctness. The study of physical parameters allows to conclude that density ratio
affects the critical layer depth, while the viscosity ratio and given flow rate bring to a bare
influence on the hyperbolicity conditions of the governing equations.

5. Numerical modelling of the roll waves
Further we carry out a numerical analysis of small non-stationary perturbation development
using nonlinear equations of two-layer flow (5). We rewrite equations (5) in conservative form
for the calculations. We denote s = u−ρw and express the velocities in the layers with the help
of s and h:

u =
1− h

1− (1− ρ)h

(
s+

ρum
1− h

)
, w =

um − uh
1− h

.

Then, for the functions s and h we have the conservative form of equations

st +
(
(u2 − ρw2)β/2 + h

)
x

= w − µu, ht + (uh)x = 0. (13)

Calculations corresponding to model (13) are carried out using MATLAB and TVD Nessyahy–
Tadmor scheme of the second-order approximation.

We suppose that the channel length L = 200 and height H = 1. At the initial moment the
channel is occupied by the two-layer liquid moving with the average velocity um = 0.3. We
assume also that ρ = 0.8, µ = 0.2 and β = 1.2. The depth of the lower layer is h0 = 0.05. The
initial velocities in the layers are found from (6) with the help of given h0. They equal u0 = 1.25
and w0 = 0.25. As mentioned above the emergence of the roll waves is possible in this interval
of physical parameters with respect to the Whitham criterion. The soft boundary conditions
uN = uN−1 are to be valid at the right boundary of the computational domain. Here uj is the
value of function in the nodal point xj . Small perturbations h(t, 0) = h0(1 + 0.05 sin(ωt)) and
s(t, 0) = u0 − ρw0 = 1.05 are given at the left boundary. A uniform grid with respect to the
spatial variable x is used for the calculations, the number of nodes N = 4000. The time step is
determined by the Courant condition. The results of calculations at t = 250 are shown in Fig. 3.
It can be observed that the roll waves are generated in the considered intervals of parameters.
The lengths of the waves depend on frequency of oscillations at the left boundary.
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Figure 3. Interface of two-layer flow y = h at t = 250 for um = 0.3, ρ = 0.8, µ = 0.2 and
h0 = 0.05. There is small periodic interface perturbation with oscillation frequency ω = 0.7 (a)
and ω = 1 (b) in the left boundary.

Note that the roll waves move against the flow in the regime under consideration. Thus the
calculation using equations (13) demonstrates development of the interface perturbations and
the roll waves formation if the Whitham criterion (12) is satisfied.

6. Conclusion
The study is focused on the analysis of two-layer flow equations (5). The solution in the form
of normal modes is constructed and dispersion relation (10) is treated for linearized system (8).
Stability domains of the flow are identified depending on the depth of the lower layer at a given
flow rate and known density ratio and viscosity ratio (Fig. 1). Characteristics for nonlinear
system (5) are found. The Whitham conditions for roll waves existence are formulated (Fig. 2).
It is shown that the results on linear stability analysis and the Whitham criterion are in a good
agreement. A numerical modelling of the roll waves is carried out using TVD scheme of high-
order accuracy (Fig. 3). The calculation of interface position demonstrates the emergence of the
roll waves for physical parameters found by means of the theoretical analysis.
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