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Abstract. A two-dimensional problem of a potential free-surface flow of an ideal
incompressible fluid caused by a singular sink is considered. The sink is placed at the horizontal
bottom of the channel. By employing a conformal map, the problem is equivalently rewritten in
the unit circle. After that, it is investigated by the Levi — Civita technique with the extraction
of the singular part of the flow that corresponds to the sink. We derive a Nekrasov type equation
that describes exactly the form of the free boundary. This equation is studied at first numerically
and then by an exact mathematical technique. It is shown that for the Froude number greater
than some particular value, there exists a unique solution of the problem such that the free
surface decreases monotonically when moving from the infinity to the sink. At the point over
the sink, the free surface has a cusp.

1. Introduction
In this paper, we study a two-dimensional steady problem of a potential free surface flow of
an ideal incompressible fluid over a flat horizontal bottom. The flow is caused by a singular
sink of the strength m > 0 that is located at the bottom. We assume that at infinity the flow
velocity tends to a constant V that is determined by the strength of the sink and by the depth
h of the fluid layer. The problem has only one non-dimensional parameter, the Froude number
Fr = V/

√
gh, where g is the gravity acceleration. Since the statement of the problem does not

include the value of V , it would be more appropriate to define the Froude number in terms of
the sink strength m. Due to the incompressibility of the fluid, m = 4hV and we have

Fr2 =
m2

16gh3
.

In this paper, for brevity, we use the parameter α = Fr2/2 instead of Fr.
In the non-dimensional statement, the problem reads as follows. Let (x, y) be rectangular

Cartesian coordinate system with the origin at the point O, where the sink is located. The flow
domain D is then between the free boundary Γ = {(x, y) | y = η(x)} and the bottom Γ0 that
coincides with the horizontal axis Ox (see Fig. 1). The problem is to find the function η as well
as the velocity vector field v = (vx, vy) and the pressure p that satisfy in D the stationary Euler
equations of an ideal incompressible fluid. These functions satisfy also the following conditions:

η(x) → 1 and v(x, y) → (∓1, 0) as x→ ±∞,
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Γ0 \ {O} : vy = 0,(
v(x, y) +

2

π

r

|r|2
)
→ 0 as |r| → 0, r = (x, y) ∈ D,

Γ : v · n = 0, p = 0,

where n is the normal vector to Γ . We assumed that the pressure is equal to zero at Γ since
the pressure is constant on the free boundary and the Euler equations include only the gradient
of p. Notice that, as a consequence of the Euler equations and the conditions at the boundary
Γ , the functions v and η satisfy the Bernoulli law:

α|v(x, η(x))|2 + η(x) = α+ 1 for x ∈ (−∞,∞). (1)

x

AB

O

y
g

hh D

�

�0

n

Figure 1. General flow pattern in the physical plane.

Due to the incompressibility of the fluid and the potentiality of the flow we can exclude the
pressure from the statement of the problem. Namely, there exist defined in D functions φ and
ψ called the potential and the stream function respectively such that

vx = ∂xφ = ∂yψ and vy = ∂yφ = −∂xψ for (x, y) ∈ D. (2)

These equations mean that φ and ψ are adjoint harmonic functions in D. Notice also that the
potential and the stream function are defined up to an additive constant.

There are quite a large number of works in which this and similar problems are studied
numerically and from a mechanical point of view. A lot of remarkable results are obtained and
we are not able to mention all of them. We restrict ourselves to papers directly related to our
study. It seems to us that there are two key properties of the flow under consideration. The first
one consists in the fact that, for sufficiently large values of the Froude number, there are no waves
going to infinity. The monotonicity of the free surface has already been obtained numerically
in the first papers on the subject (see, e.g., [1–4]). It can be explained by the following reason.
The wave velocity is equal to

√
gh and, for large Froude numbers, this quantity is less than the

velocity of the flow which is directed towards the sink. Notice that in the case of the source the
waves do exist (see [5]). In general, the waves occur in the flows with small Froude numbers, i.e.,
in the so called subcritical case. This is not the subject of the present paper and we refer to the
monograph [6], where an extensive bibliography on the question and the solution of various free
surface flow problems can be found. In particular, the existence of waves for the flow around the
point vortex was proved. We have another point singularity but the technique suggested there
seems to be applicable also in our case.

The second and not so obvious property of the flow is that the free boundary has a cusp over
the sink for the sufficiently large Froude number. This fact was discovered numerically in the
above-cited works [1–4]. Here, we should notice that for small Froude numbers the stagnation

Nonlinear Waves: Theory and New Applications (Wave16) IOP Publishing
Journal of Physics: Conference Series 722 (2016) 012035 doi:10.1088/1742-6596/722/1/012035

2



point can occur over the sink. At this point the velocity of the fluid is equal to zero. The
presence of the stagnation point is typical for the problem with the sink at the sloping bottom
(see [7] and also [1, 2]).

In this paper, we consider the case of the Froude number greater than some particular value.
Thus, the free boundary possesses both these properties. The novelty of our work consists in the
following. The papers cited above investigate numerically approximate equations describing the
free surface. Usually they use a truncated power series. We derive a Nekrasov type equation that
is exactly satisfied by the free boundary and then look for its numerical solutions. Moreover, we
are able to proof with the mathematical rigor that this equation has a unique solution. This fact
enables us to be sure that our numerical solution is close to the exact solution of the problem.
The mathematical part of this work will be published later. In the present paper, we formulate
the results only.

2. The statement of the problem in the unit semicircle
Since we consider a two-dimensional problem, it is convenient to make use of the complex
variable approach. Together with the complex variable z = x + iy we introduce the complex
velocity v = vx − ivy and the complex potential w = φ + iψ. As it follows from (2), w is a
holomorphic function in D and v = dw/dz. Let us denote by F the conformal mapping of the
flow domain D onto the upper unit semicircle D∗. We denote by G the inverse mapping and
by t the complex variable in D∗. The images of the point of the sink z = 0 and the points A
and B at infinity are the points t = 0, t = 1 and t = −1 respectively (see Fig. 2). Besides that,
F (Γ ) = Γ ∗ = {t | |t| = 1, Im t > 0}. The mapping F as well as G is unknown and should be
found. However, we can easily determine the flow in the semicircle. It is not difficult to see that

B AO

C

Figure 2. The flow in the unit semicircle D∗.

we have a singular sink at the point t = 0 and the same singular sources at t = ±1. Therefore,
the complex potential w∗ in D∗ is given by the following expression:

w∗(t) =
2

π
log

( t2 − 1

2t

)
− i =

2

π

(
log(t+ 1) + log(t− 1)− log 2t− iπ/2

)
.

Notice, that w(z) = w∗(F (z)) and

v
(
G(t)

)
=
dw∗

dt
(t)

dF

dz

(
G(t)

)
=
dw∗

dt
(t)

(dG(t)
dt

)−1
.

This implies that
dG(t)

dt
=

1

v
(
G(t)

) dw∗

dt
(t). (3)
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If we could determine the function v
(
G(t)

)
, then the last equation would make it possible to

determine G and, as a consequence, to solve the problem. The function v
(
G(t)

)
is holomorphic

in D∗ and we denote by u(t) its holomorphic extension to the unit circle, which is possible due
to the Schwarz reflection principle. Notice that u(t) has a pole at the point t = 0. Following
the Levi-Civita approach, we introduce a holomorphic in the unit circle {t | |t| < 1} function

Ω(t) = θ̂(t) + iτ̂(t) with real θ̂ and τ̂ such that

u(t) = − 2

π

1

t
e−iΩ(t).

The function θ̂ is defined up to an additive constant 2πk, where k is an integer number. We
make this function single-valued by fixing it at the point t = 1: θ̂(1) = 0. In order to find Ω in
the unit circle, it is sufficient to know its boundary value at |t| = 1, i.e., for t = eiσ, σ ∈ [0, 2π).
Denote

τ(σ) = τ̂(eiσ), θ(σ) = θ̂(eiσ).

These functions satisfy the following boundary conditions:

θ(0) = θ(π/2) = θ(π) = θ(3π/2) = 0 and τ(0) = τ(π) = log
π

2
. (4)

Besides that, due to the symmetry of the problem, we have:

τ(π/2 + σ) = τ(π/2− σ), θ(π/2 + σ) = −θ(π/2− σ),

τ(σ) = τ(−σ), θ(σ) = −θ(−σ)
for all σ ∈ [0, 2π].

In order to obtain an equation for τ and θ on Γ ∗, we employ the Bernoulli equation (1). The
substitution t = eiσ and the differentiation with respect to σ give:

α
d|u(eiσ)|2

dσ
+ Im

dG(eiσ)

dσ
= 0 for σ ∈ (0, π).

As it follows from (3),
dG(eiσ)

dσ
= −e−τ(σ) ei(σ+θ(σ)) cotσ. (5)

After some calculation we obtain the Nekrasov type equation:

τ ′(σ) =
sin(σ + θ(σ)) cotσ

απ + 3
∫ σ
0 sin(s+ θ(s)) cot s ds

for σ ∈ (0, π). (6)

This equation contains two unknown functions. To obtain one more equation, we can use the
Hilbert transform. Taking into account the symmetry properties of the functions τ and θ, we
derive the following relation:

θ(σ) =
1

π

∫ π/2

0
τ(s)

(
cot(s− σ)− cot(s+ σ)

)
ds, σ ∈ [0, π/2]. (7)

Equations (6) and (7) together with the boundary conditions (4) enable us to find the
functions τ and θ and to solve the problem. However, it would be more convenient to rewrite
(7) in another form. Since cotσ =

(
log | sinσ|

)′
, we have

θ(σ) =
1

π

∫ π/2

0
K(s, σ) τ ′(s) ds, σ ∈ [0, π/2], (8)

where

K(s, σ) = log
∣∣∣sin(s+ σ)

sin(s− σ)

∣∣∣ = log
∣∣∣tan s+ tanσ

tan s− tanσ

∣∣∣ = 2

∞∑
k=1

sin 2ks sin 2kσ

k
.

Notice that K(s, σ) ≥ 0 for all s and σ in [0, π/2].
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3. Numerical simulations
If we find the functions τ and θ from equations (6) and (8), we can determine the velocity vector
field in D and the free boundary Γ . In this section, we present the numerical calculations of Γ .
This boundary can be defined in the parametric form:

Γ = {(x, y) | x = xΓ (σ), y = yΓ (σ), σ ∈ (0, π)}.

This definition in the complex variables is as follows: Γ = {z ∈ C | z = G
(
eiσ

)
, σ ∈ (0, π)}.

Due to (5) we have

dxΓ (σ)

dσ
= Re

dG
(
eiσ

)
dσ

= −e−τ(σ) cos
(
σ + θ(σ)

)
cotσ, xΓ (π/2) = 0,

dyΓ (σ)

dσ
= Im

dG
(
eiσ

)
dσ

= −e−τ(σ) sin
(
σ + θ(σ)

)
cotσ, yΓ (0) = 1.

These equations, in particular, yield that

dyΓ (σ)

dσ

(dxΓ (σ)
dσ

)−1
= tan

(
σ + θ(σ)

)
.

It means that σ + θ(σ) is the slope angle of the tangent to Γ at the point
(
xΓ (σ), yΓ (σ)

)
.

In order to find the solution of equations (6) and (8), we have used the method of successive
approximations. We take θ ≡ 0 as the first approximation and calculate until the difference
between two successive approximations is greater than 10−6. In Fig. 3, the free boundary for

-2-4 0 2 4
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Fr=1.34
Fr=14.14

Figure 3. The free boundaries for
two values of the Froude number.
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Figure 4. The dependence of the
distance between the sink and the
cusp point at the free boundary on
the Froude number.

α = 0.9 and α = 100 is shown. It should be noted that the iterative process diverges for
sufficiently small α, namely, when α is less than 1/2 approximately. By this reason, the graph
in Fig. 4 begins at a non-zero Froude number. This graph shows the dependence of the distance
between the sink and the cusp point at the free boundary on the Froude number. As seen, this
distance decreases very slowly starting from the value 5 of the Froude number.

4. Mathematical treatment of the problem
In this section, we formulate the mathematical results related to the solvability of the problem.
These results will be proved in a separate publication. Notice that we have essentially used some
ideas from [8] and especially from [9].
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Let us rewrite equations (6) and (8) as an operator equation for the function ζ(σ) = 3τ ′(σ):

ζ = Φ(ζ), (9)

where Φ is a nonlinear operator that acts as follows

Φ(ζ)(σ) =
3

απ

sin
(
σ + θ(σ)

)
cotσ

exp
∫ σ
0 ζ ds

, σ ∈ [0, π/2],

θ(σ) =
1

3
(Hζ)(σ), (Hζ)(σ) =

1

π

∫ π/2

0
K(s, σ) ζ(s) ds.

The kernel K is defined after equation (8). We look for a solution of equation (9) in the Banach
space L2(0, π/2) = {ζ(σ) | ∥ζ∥ <∞},

∥ζ∥2 =
∫ π/2

0
|ζ(σ)|2 dσ.

In order to prove the solvability of equation (9), we have used two classical fixed point
theorems. The first one is the Schauder theorem. Let us take the following closed convex set in
L2(0, π/2):

B+
R = {ζ ∈ L2(0, π/2) | ∥ζ∥ 6 R, ζ ≥ 0}.

It is not difficult to establish that Φ is continuous and compact as an operator in L2(0, π/2). It
remains only to prove the existence of R > 0 such that Φ(B+

R) ⊂ B+
R . By employing the Fourier

analysis, we have found that this condition is satisfied if

R ≥ 3

2

√
π

2

1

απ − 2
.

The positiveness of Φ follows from the positiveness of the kernel K. Thus, equation (9) is
solvable if

α >
2

π
. (10)

This inequality in terms of the Froude number approximately looks as Fr > 1.128.
The Schauder fixed point theorem says nothing about the uniqueness of the solution. In

order to establish this fact, we have to use other methods, for instance, the Banach contraction
mapping principle. This principle gives not only the existence but also the uniqueness of the
solution. We have proved that

∥Φ(ζ1)− Φ(ζ2)∥ ≤ 8

απ
∥ζ1 − ζ2∥, for all ζ1, ζ2 ∈ B+

R ,

where R is the same as above. Thus, Φ is a contraction and the solution of (9) is unique if

α >
8

π
. (11)

This inequality in terms of the Froude number approximately looks as Fr > 2.257.
We do not claim that (10) and (11) are the best possible conditions for the existence and the

uniqueness. Surely, more precise estimates will improve these conditions. Notice that, in the
numerical simulations, we were able to calculate the solution for smaller values of α. Of course,
it can also be explained by a not sufficient accurate approximation of the problem.
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