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A A Papin and A N Sibin
Altai State University, Barnaul, Russia
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Abstract. The process of internal erosion in a three-phase saturated soil is studied. The
problem is described by the equations of mass conservation, Darcy’s law and the equation of
capillary pressure. The original system of equations is reduced to a system of two equations
for porosity and water saturation. In general, the equation of water saturation is degenerate.
The degenerate problem in a one-dimensional domain and one special case of the problem in a
two-dimensional domain are solved numerically using a finite-difference method. Existence and
uniqueness of a classical solution of a nondegenerate problem is proved.

1. Introduction
Various models of internal erosion are used for describing applied problems of the formation of
cavities under dam reservoir, the destruction of the wellbore walls as a result of soil erosion,
the suffusion craters formation on surface topography. Evaluation of suffusion removal is also a
relevant problem in many environmental works. Advanced models of internal erosion are based
on approaches of mechanics of multiphase media [1, 2, 3, 4]. These models are intended to
describe more detailed picture of the movement of water and fluidized solid particles mixture in
soil. Precisely, the determination of a velocity field, porosity, water saturation and pressure of
each phase.

These models include phase transition and use filtration approximation. The basic equations
are mass conservation law for each phase and Darcy’s law for moving phases. This system
of equations is similar in structure to the system of Masket-Leverett equations of two-phase
filtration for immiscible fluids; for detailed mathematical theory description see [5, 6]. We did
not find any study related to the justification problem of the system of equations with porosity
to be determined, except a few special cases [7, 8].

The key points of the problem are the degeneracy of the equations of the obtained solution
(relative phase permeability coefficients k0i can be equal to 0 if saturation of the ith phase
si ≤ 0 in the equation (2)) and the unknown porosity of soil. The problem in this formulation
is very difficult to study analyticaly, especially it is necessary to justify the physical principles
of maximum for the porosity and the water saturation (0 ≤ ϕ ≤ 1, 0 ≤ si ≤ 1).

This approach is also used in the study of two-phase filtration, dissociation of hydrates in
natural layers with iced parts, heat and mass transfer in freezing or melting soil.

2. Formulation of the problem
We consider a mathematical model of internal erosion of soil in a finite domain Q ⊂ Rn (where
Q and n will be specified further). Saturated soil is a three–phase porous medium [1] consisting
of water (i = 1, the first phase), fluidized solid particles (i = 2, the second phase) and solid
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skeleton of soil (i =3, the third phase). The process is described by the equations of mass
conservation for each phase with phase transitions, generalized Darcy’s law and the equation of
capillary pressure for water and fluidized solid particles [2, 3, 4]:

∂ρi
∂t

+∇ · (ρiu⃗i) =
3∑

j=1

Iij , i = 1, 2, 3, Iji = −Iij ,
3∑

i,j=1

Iij = 0; (1)

v⃗i = siϕu⃗i = −K0(ϕ)
k0i
µi

(▽pi + ρ0i g⃗), i = 1, 2; p2 − p1 = pc(s1) ≥ 0, s1 + s2 = 1. (2)

Here u⃗i is a velocity of the ith phase (u⃗3 = 0, the third phase is considered to be stationary),
ρi is a reduced density related to a true density ρ0i and a volumetric concentration αi by the
formula ρi = αiρ

0
i (the condition

∑3
i=1 αi = 1 is a consequence of the definition of ρi), Iji is a

rate of mass transfer from the jth to the ith phase per unit volume in unit of time, v⃗i = ϕsiu⃗i
is a filtration velocity of the ith phase (i=1,2), ϕ is porosity, s1 and s2 are water and fluidized
solid particles saturations (α1 = ϕs1, α2 = ϕs2, α3 = 1 − ϕ), K0 is the filtration tensor; k0i is
a relative phase permeability (k0i = k0i(si) ≥ 0, k0i|si=0= 0), µi is a dynamic viscosity, pi is a
phase pressure (i=1,2); pc is the capillary pressure, g⃗ is the acceleration vector due to gravity.

The functions of the system (1), (2) satisfy the assumptions: ρ0i = const, ρ02 = ρ03, Iij = −Iji.
Moreover, I12 = I13 = 0, I23 = ρ03I, I is a prescribed function of s1, ϕ, v1, v2.

If porosity is a known function, then system (1), (2) will read as the Masket — Leverett
equations of two-phase filtration for immiscible fluids. We shall investigate the problem with
the porosity as a function to be determined.

We shall prove the unique solvability of the nondegenerate problem (it means a(s) > 0
for any s) in a one-dimensional domain, check validity of physical maximum principles for the
porosity and the water saturation in the same problem and solve numerically the one-dimensional
degenerate problem and one special case of the problem in a two-dimensional domain.

In the one-dimensional domain the system (1), (2) reads [4, 9]

∂sϕ

∂t
=

∂

∂x
(K0(ϕ)a(s)

∂s

∂x
− b(s)v(t) + F (s, ϕ)), (3)

∂ϕ

∂t
= I(s, ϕ). (4)

Here s ≡ s1, v(t) = v1 + v2 is a mixture filtration velocity (prescribed function of time) [5]. The
rate of mass transfer is given as I = λδ(s)R(ϕ)max{|v(t)|−vk, 0} [2, 10], where δ(s) = 0 if s ≥ 1,
δ(s) = 1 − s if 0 < s < 1, δ(s) = 1 if s ≤ 0; R(ϕ) = 1 if ϕ ≥ 1, R(ϕ) = ϕ(1 − ϕ) if 0 < ϕ < 1,
R(ϕ) = 0 if ϕ ≤ 0, λ > 0 is a dimension constant [1/m], vk is the critical velocity. The critical
velocity indicates whether the erosion process has started or has not. If the velocity v reaches
this critical speed, the theory suggests the erosion process will begin (the critical speed can be
evaluated using experimental methods, see, e.g. [11]).

The coefficients of the system (3), (4) are given in following form

a(s) = −k01k02
k

∂pc
∂s

> 0, k0i(s) =
k0i
µi

≥ 0, k(s) = k01 + k02 > 0,

F (s, ϕ) = K0(ϕ)
k01k02

k
(ρ01 − ρ02)g, b(s) =

k01
k

≥ 0.

The functions s(x, t) and ϕ(x, t) satisfy the initial and boundary conditions

s(0, t) = s0(t), s(1, t) = s1(t), s(x, 0) = s0(x), ϕ(x, 0) = ϕ0(x). (5)
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In further analysis we use notation of functional domains described in [12].
Definition. We call a pair of functions s(x, t) and ϕ(x, t) as a classical solution of the

problem (3)–(5), where s(x, t), ϕ(x, t) ∈ C2+α,(2+α)/2(QT ), QT = Q × (0, T ), Q = (0, 1) and
satisfy the equations (3), (4) and the initial and boundary conditions (5) as continuous functions
in QT .

Theorem We suppose that functions, coefficients and parameters of the problem (3)–(5)
satisfy the following conditions:

1) the functions K0(ϕ), a(s), b(s), F (s, ϕ), pc(s) and their derivatives up to the second order
are continuous in s ∈ [0, 1], ϕ ∈ [0, 1] and satisfy the conditions

0 < m ≤ K0(ϕ), a(s) ≤ M < ∞, |F (s, ϕ)|, b(s) ≤ M, pc ≥ 0,
∂pc
∂s

< 0,

where F (s, ϕ) = 0 if s < 0, s > 1;
2) the functions v(t), s0(t), s1(t), s

0(x), ϕ0(x) satisfy following smoothness conditions

v(t), s0(t), s1(t) ∈ C2+α[0, T ]; s0(x), ϕ0(x) ∈ C2+α(Q)

and the matching conditions

s0(0) = s0(0), s1(0) = s0(1),

as well as the inequalities

|v(t)| ≥ vk, 0 ≤ s0(x) ≤ 1, 0 < m0 ≤ ϕ0(x) ≤ M0 < 1,

0 ≤ s0(t) ≤ 1, 0 ≤ s1(t) ≤ 1,

where m0, M0, m1, M1 are given positive constants.
Then the problem (3)–(5) has only one classical solution for any finite interval (0, T ].
Moreover,

0 ≤ s(x, t) ≤ 1, 0 < ϕ(x, t) < 1, (x, t) ∈ QT .

We shall establish the proof of the theorem with the help of the Schauder fixed-point theorem
[13] and standard auxiliary constructions [14].

Lemma 1. Let the assumptions of the theorem be satisfied and a pair of function (s, ϕ) be
the classical solution of the problem (3)–(5). Then ϕ and s satisfy inequalities ϕ0 ≤ ϕ ≤ 1 and
0 ≤ s ≤ 1.

Proof. The inequality for ϕ is easily obtained from the fact that I(s, ϕ) is nonnegative. In
the purpose to obtain the inequality for s we introduce a cut–off function s = max{s − 1, 0}.
Multiplying the equation (3) by s and integrating the result in Qt, we derive the equality

t∫
0

1∫
0

sϕτsdxdτ +

t∫
0

1∫
0

(ϕs)τsdxdτ =

t∫
0

1∫
0

(K0asx + F )sxdxdτ −
t∫

0

1∫
0

v(τ)bssxsdxdτ. (6)

Due to the definition of s, all integrals in (6) should be taken in the domain Q∗
t = {(x, t) ∈

Qt, s > 1}, where s = s− 1, st = st, sx = sx, ϕt > 0 and F = 0. Taking this into account in (6),
we arrive at the following estimate

||
√
ϕs||22,Q ≤ C

t∫
0

||
√
ϕs||22,Qdτ,
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where C is a positive constant. Hence, it follows that s ≡ 0. The inequality s ≥ 0 is proved in
complete analogy using the same method with s = max{−s, 0}. Lemma 1 is proved.

Following [4], we come to the Lemma 2.
Lemma 2. Let two pairs (si, ϕi), i = 1, 2, be two different classical solutions of the system

(3)–(4) with initial and boundary conditions equal to s0i , ϕ
0
i and s

(i)
0 , s

(i)
1 respectively. Let

||s10 − s20||+ ||s11 − s21||+ ||s01 − s02||+ ||ϕ0
1 − ϕ0

2|| = δ.

Then we have the estimate

1∫
0

(s2 + ϕ2
t + ϕ2)dx ≤ Cδ,

t∫
0

1∫
0

(ϕ2
x + ϕ2

xt + s2x)dxdτ ≤ Cδ,

where C is a constant depends only on m0,m,M, vk.

Using the substitution V =
s∫
0
a(τ)dτ in (3) we arrive at the equation

Vt −
K0(ϕ)

ϕ
a(s(V ))Vxx = f,

f = −a(s(V ))s(V )
ϕt

ϕ
+ a

1

ϕ

∂K0

∂ϕ
ϕxVx +

1

ϕ

∂F

∂V
Vx + a

1

ϕ

∂F

∂ϕ
ϕx − a

v(t)

ϕ

∂b

∂V
Vx.

Following [5], we come to the Lemma 3.
Lemma 3. Let ϕ and s be the classical solution of the problem (3)–(4), then we have the

inequality
1∫

0

(V 2
x + V 2

t )dx+

t∫
0

1∫
0

(V 2
xx + V 2

xt)dxdt ≤ C1(m0,m,M, vk).

Proving of the Lemmas 1 and 2 is discussed in [4].
As a consequence of lemma 3 we have the estimate

(||s||(α)QT
+ ||ϕ||(α)QT

) ≤ C2(m0,m,M, vk).

Proof of the theorem. Substituting any continuous function s̃, which satisfies the
inequality |s̃| ≤ M1 (where the constant M1 > 0 is any nonnegative constant and will be

chosen further), into coefficients of the equation (4), we arrive at the problem for ϕ̃

∂ϕ̃

∂t
= I(ϕ̃, s̃), ϕ̃|t=0 = ϕ0(x). (7)

Considering that the problem (7) has the unique classical solution and following the Lemma 1

we come to the estimate ϕ0 ≤ ϕ̃ ≤ 1. Substituting s̃(x, t) and ϕ̃(x, t) into coefficients of the
equation (3), we arrive at the linear equation for s(x, t)

∂sϕ̃

∂t
=

∂

∂x
(K0(ϕ̃)a(s̃)

∂s

∂x
− b(s̃)v(t) + F (s̃, ϕ̃)), (8)

with the boundary and initial conditions described by the equation (5). The solvability of this
problem is evidently established following the well-known results about the solvability of the
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linear parabolic equations [12]. Moreover, following the proof of the Lemmas 1–3, we obtain, in
particular, the estimate of the Holder constant

||s||(α)QT
≤ C3(m0,m,M, vk). (9)

Taking M1 = C3 due to the fact that M1 can be chosen freely, we shall consider compact
mapping U : s̃ → s. From the inequality (9) it follows that this mapping in the domain C0,0(Q)
transforms the solid sphere {|s̃| ≤ M1} into itself. Besides, the mapping is continuous in the
domain C0,0(Q). Moreover, the mapping U is a completely continuous mapping: any continuous

function is transformed to a function from the class Cα,α/2(Q) satisfying the inequality (9).
Consequently, all conditions of the Schauder fixed-point theorem are satisfied for our mapping
U . Hence, there exist at least one fixed-point s(x, t) ≡ s̃(x, t) of the mapping U and the

corresponding classical solution ϕ(x, t) ≡ ϕ̃(x, t) of the problem (7)–(8). It is evident that the
pair (ϕ(x, t)s(x, t)) is the classical solution of the problem (3)–(5). The uniqueness is achieved
with the help of the Lemma 2.

3. Method of the numerical solution
The system of the equations (1)–(4) is solved numerically with the given initial and boundary
conditions in the form (5) in a finite one-dimensional domain. Numerical study aims to
investigate the behavior of the porosity and water saturation as functions of space variables
and time depending on the given parameters of the problem.

The numerical solution of the problem (3)–(5) is obtained with the help of finite-difference
method. Taking this into account, it is convenient to introduce a finite-difference grid with
constant step xi = ih, i = 0...N and tn = nτ , n = 0...T , h is a mesh size, N is the number of
spatial steps, τ is a time step, T is the number of time steps. Hence, the system (3), (4) reduced
to the system of finite-difference equations

ϕn
i

sn+1
i − sni

τ
=

1

h2
(Kn

0i+ 1
2
an
i+ 1

2
(sn+1

i+1 − sn+1
i )−Kn

0i− 1
2
an
i− 1

2
(sn+1

i − sn+1
i−1 ))+ (10)

+

(
∂F

∂s
(sni , ϕ

n
i )− v(tn)

∂b

∂s
(sni )

)
sn+1
i+1 − sn+1

i−1

2h
− sn+1

i Ini ,

an
i+ 1

2
=

a(sni + sni+1)

2
, an

i− 1
2
=

a(sni + sni−1)

2
,

Kn
0i+ 1

2
=

K0(ϕ
n
i + ϕn

i+1)

2
, Kn

0i− 1
2
=

K0(ϕ
n
i + ϕn

i−1)

2
, Ini = I(sni , ϕ

n
i ).

Here the index i refers to space and index n refers to time.
We shall find ϕ in the form [15]

ϕ =
ϕ0

ϕ0 + (1− ϕ0)e
−

t∫
0

δ(s)max{|v⃗(τ)|−vk,0}dτ
, (11)

which can be obtained from (4) with R(ϕ) = (1− ϕ)ϕ.
The numerical algorithm consists of several steps. First, we substitute the initial condition

for the porosity ϕ0 into the coefficients of the finite-difference scheme (10). Using sweep method
in the scheme (10) we find the values of the saturation s. Then substituting found the values of
the saturation into the given equation (11) for ϕ, we find the values of the porosity ϕ1

i in each
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grid point. Finally, repeating the algorithm, we find the values of porosity and concentration at
next time step and so on.

Numerical results
The porosity and the water saturation are calculated with (g = 0, vk = 0, v(t) = 1,

pc(s) = (1/s2 − 1), K0(ϕ) = ϕ3, k0i = s2i if 0 ≤ s ≤ 1, k0i = 0 if si ≤ 0, k0i = 1 if si ≥ 1). The
initial and boundary conditions are s(x, 0) = (x0.5)/l+0.5, s(0, t) = 0.5, s(l, t) = 1, ϕ0(x) = 0.3.
At the points x = l there is no fluidized solid particles. The initial condition for s assumed to be
a linear function. In our calculations we keep h = 0.01, τ = 0.01, N = 100, T = 100, l = 1. The
numerical results are shown in figure 1–2. It is shown that if saturation s reaches 1 the erosion
process will stop and the porosity will be unchanged.

Figure 1. Porosity as a function of time and x.

Figure 2. Water saturation as a function of time and x.

4. Two dimensional case of the problem
We shall describe one special case of the profile problem and solve it numerically in the purpose
of finding 2D area affected by the erosion process.

We consider a two-dimensional movement of the water and fluidized solid particles with
given concentration of the fluidized solid particles s2 = c = const ∈ [0, 1] and with the equality
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of both pressures p1 = p1 = p. The intensity of the phase transition is taken in the form
I23 = ρ03λϕc(1− ϕ)max(|v1| − vk, 0).

With such assumptions in the system (1)–(2) we arrive at the following system

div(a(c, ϕ)(∇p+ ρ01g⃗)) = 0,
∂ϕ

∂t
= I, (12)

where a(c, ϕ) = (cλ+1− c)ϕkf and all derivatives are taken with respect to two space variables.
The flow region Q is a rectangular cross section with sides 0 ≤ x ≤ 25, 0 ≤ y ≤ 1. The boundary
of Q consists of 5 parts: Γ1 = {0 ≤ x ≤ 25, y = 0}, Γ2 = {0 ≤ y ≤ 0.25, x = 0}

∪
{0.29 ≤ y ≤

1, x = 0}, Γ3 = {0 ≤ x ≤ 25, y = 1}, Γ4 = {0 ≤ y ≤ 1, x = 25}, Γ5 = {0.25 ≤ y ≤ 0.29, x = 0}.
The velocity is satisfied to the conditions of impermeability on Γ1,Γ2,Γ3. Deriving equations for
p from these conditions with the help of the Darcy’s law and adding conditions for p on Γ4,Γ5,
we come to the boundary conditions for pressure p

∂p

∂y

∣∣∣∣
Γ1

= −gρ01;
∂p

∂x

∣∣∣∣
Γ2

= 0;
∂p

∂y

∣∣∣∣
Γ3

= −gρ01; p

∣∣∣∣
Γ4

= −gρ01y + p0; p

∣∣∣∣
Γ5

= −gρ01y.

Here p0 is a given pressure of the saturated soil in the point of intersection of Γ1 and Γ4. The
equation (12) is solved numerically using the similar method described in the section 1, but with
respect to two space variables, i.e. at first, we solve the finite-difference equation for pressure p
in x direction at a half time step n+1/2, then we solve the equation for p in y direction at next
time step n + 1. The equation (12) is investigated numerically for ϕ0 = 0, 25, g = 9.81 m/c2,
kf = 10−2 m/s. The critical speed vk is 0.11 m/s. Numerical results are shown in figure 3. The
area affected by the process of erosion is shown by the orange color.

Figure 3. The area affected by the process of erosion (orange).

5. Conclusion
The global solvability of the nondegenerate one dimensional problem is proved. The degenerate
one dimensional problem and one special case of the problem in a two dimensional domain with
given concentration of the fluidized solid particles are solved numerically by the finite-difference
method. The area affected by the process of erosion is founded.
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