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Abstract. The Biermann Battery effect is frequently invoked in cosmic magnetogenesis
and studied in High-Energy Density laboratory physics experiments. Unfortunately, direct
implementation of the Biermann effect in MHD codes is known to produce unphysical magnetic
fields at shocks whose value does not converge with resolution. We show that this convergence
breakdown is due to naive discretization, which fails to account for the fact that discretized
irrotational vector fields have spurious solenoidal components that grow without bound near a
discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to
a formulation of the Biermann effect that gives rise to a convergent algorithm. We note a novel
physical effect a resistive magnetic precursor in which Biermann-generated field in the shock
“leaks” resistively upstream. The effect appears to be potentially observable in experiments at
laser facilities.

1. Introduction
Dynamo theories of proto- and extra-galactic primordial magnetic fields, which endeavor to
explain how those fields achieved their current strength and structure, work by amplifying small
initial seed fields by means of turbulent plasma motions [1, 2]. However, the induction equation
of resistive magnetohydrodynamics (MHD),

∂B

∂t
= ∇×××

{
u×××B− ηc2

4π
∇×××B

}
, (1)

always admits the solution B(x, t) = 0. This poses a problem for the generation of the required
seed fields, as they cannot be created in ideal MHD starting from a field-free state.

There have been several proposals for generating the required seed fields from mechanisms
such as primordial phase transitions, or from processes occurring during inflation [3, 4]. The
Biermann battery effect [5] provides another popular resolution of this problem [2, 3, 6]. The
effect, which arises in consequence of the large difference in the electron and ion mass, is
attributable to small-scale charge separation in the plasma. Pressure forces produce much larger
accelerations of electrons than of ions, and the relative acceleration of the two components results
in charge separation that must be balanced by an electric field

EB ≡ −(ene)
−1∇Pe, (2)
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where ne and Pe are the electron number density and pressure, respectively. Since this field is
not, in general, irrotational, it can act as a source of magnetic field in the induction equation,

∂B

∂t
= ∇×××

{
u×××B− ηc2

4π
∇×××B +

c

ene
∇Pe

}
, (3)

generating a non-zero B from an initially unmagnetized state.
The Biermann battery effect has been successfully invoked in numerical simulations exploring

the generation of seed fields in cosmological ionization fronts [7, 8], protogalaxies [9], and Pop-III
star formation [10]. Magnetic field generation by the Biermann mechanism is also of significant
interest in direct-drive and indirect-drive inertial confinement fusion, where strong gradients
behind the converging shock can lead to dynamically important field strengths [11], and more
generally in the field of High-Energy Density Physics, where the effects of field generation [12]
and amplification [13] can be examined in a laboratory setting at laser facilities, in experiments
where large gradients are produced in strong plasma shocks [14, 15, 16].

Unfortunately, a straightforward implementation of the Biermann effect in finite-volume
Eulerian, purely Langrangian, and ALE codes, whether as a split source term or as a flux
term, leads to non-convergent results [17]. In symmetric situations such as planar or spherical
shocks, where no field should arise, such implementations produce anomalous field generation
that grows without bound with resolution [17]. This behavior is observed across a range of
different MHD codes (see the discussion of codes in [17]). This is the Biermann catastrophe
of numerical MHD. We show below that this failure is intimately related to the failure of such
codes to correctly model the structure of the plasma shock.

In a gasdynamic/MHD formulation, where the shocks are modeled as zero-width
discontinuities of the flow, the trouble arises from the behavior of the Biermann flux, which
is to say from the electric field, Equation (2), in the vicinity of a shock. The gradient ∇Pe,
which analytically speaking acquires a Dirac δ component at the shock, is ascribed a numerical
magnitude that grows without bound at the shock with increasing resolution. It is this divergence
that is connected with failure of MHD codes to correctly predict shock-driven magnetic field
generation in supposedly simple test cases, where the correct value of the generated field is zero.
The investigation of this failure is one of the central concerns of this article.

In what follows, we appeal to the kinetic theory of the structure of plasma shocks to guide
us to an accurate and convergent treatment of the effect in MHD codes. We clarify the origin
of the Biermann catastrophe as a numerical effect attributable to the difficulty of discretizing
the source term of Equation (2) in the vicinity of a shock. We show that the numerical anomaly
can be eliminated by leveraging the continuity of the electron temperature Te across shocks.
Reformulation of the Biermann source term in terms of Te allows the singularity to be isolated,
and the flux of magnetic field due to the Biermann effect to be rewritten in a manifestly finite
form suitable for translation into a convergent numerical algorithm.

The Biermann effect is due to electron-ion charge separation, and is sensitive to departure
from thermal equilibrium between electrons and ions. Such a departure is precisely what occurs
at shocks, so that a correct treatment of the effect at shocks necessarily requires that the
disequilibrium be modeled. For this, a 2-temperature plasma model is mandatory. There is no
consistent treatment of the Biermann effect at shock in full electron-ion thermal equilibrium.

We also point out a novel and interesting effect associated with the Biermann effect near
a shock: A resistive magnetic precursor is generated in resistive MHD, wherein magnetic field
generated by the Biermann effect in the shock “leaks” resistively into the upstream fluid whose
physical extent is proportional to the resistivity. The effect is potentially observable in laboratory
conditions at high-intensity laser facilities such as Vulcan, Omega, and NIF. An appropriately-
designed experiment at such facilities could currently observe the precursor, providing a clean
experimental validation test of the Biermann effect in plasma shocks.
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2. The Biermann battery at shocks
We begin by reviewing some essential results from the kinetic theory of shocks in plasmas. The
basic theory of the fluid structure of planar shocks in plasmas was set out in [18], while the
electromagnetic structure of such shocks was discussed in [19], and more recently in [20]. An
extremely lucid presentation of these results may be found in Chapter VII of [21].

The essential ingredients to be imported from the kinetic theory of plasma shocks in order
to fashion a working MHD model of the Biermann effect are (1) the loss of thermal equilibrium
between electrons and ions at shocks; and (2) the adiabatic behavior of electrons.

As discussed on p.36 of [22], a strong shock disturbs the thermal equilibrium between electrons
and ions in a plasma. That equilibrium is maintained by electron-ion collisions, and operates
over timescales τei that are long compared to the shock-crossing time of a parcel of fluid entering
the ion viscous shock in consequence of the large ratio mi/me [23]. As a result, it is essential to
describe the fluid in terms of an additional degree of freedom – the electron temperature, Te –
with respect to the usual equilibrium MHD model.

Fortunately, it is unnecessary to model the fluid using new inertial degrees of freedom to
describe the electron fluid. A single inertial component for the fluid as a whole gives an adequate
description of the fluid structure near the shock, and a completely satisfactory description of
the fluid in smooth flow regions, where electron-ion collisions restore local thermal equilibrium
[22, 21]. This makes it easier to adapt existing MHD codes to treat the Biermann effect correctly,
since it is much easier to add a scalar degree of freedom for Te than it would be to deal with
two velocity fields, one each for the electron fluid and for the ion fluid.

The large ion-to-electron mass ratio, which we recall from the discussion preceding
Equation (2) is responsible for the charge separation that produces the Biermann effect, has
the further consequence that thermal conductivity due to electron-electron collisions dominates
the heat transport in the fluid. At the same time, the forces between electrons and ions as
the fluid crosses the ion viscous shock front are effectively dissipation-free, as they are simply
electrostatic fields generated by charge separation, and collisional dissipation processes are too
slow to act during the shock-crossing timescale.

These observations lead to the conclusion that while the ions undergoing shock compression
experience the usual entropy-generating processes, the electrons are compressed adiabatically by
the electrostatic forces exerted upon them by the ions, and consequently do not suffer entropy
increments due to shock compression. The electron entropy is thus a passively-advected scalar,
except for the dissipative effect of electron thermal conduction, and for the slow (relative to
timescales relevant to the shock) effect of electron-ion collisional equilibration. Electron thermal
conduction effectively rules out any sudden change in Te at the shock, since such a change would
produce an enormous restoring heat flux to heal the discontinuity.

The fluid structure that follows from these considerations is of a sudden discontinuous
compression of the ions at the shock, accompanied by a smooth increase in Te, which is
continuous throughout the shock (in the Eulerian limit where the shock width tends to zero,
Te acquires a discontinuous derivative in the direction of the shock normal). The electron
temperature exhibits a thermal precursor that leads the shock. The size λT of the precursor
region may be calculated by balancing advection against heat diffusion in the shock frame:

λT ≈
κe

ρcv,eD
, (4)

where κe is the electron thermal conductivity, cv,e is the electron specific heat at constant volume
per unit mass, and D is the shock speed [18, 21]. The effect of the precursor region on accretion
shocks in galaxy clusters has been recently studied in [24].

The additional degree of freedom represented by Te must be modeled numerically by adding
an equation to the usual equations of compressible MHD. That is, in addition to the usual
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conservation laws for mass, momentum, and energy, and to the Equation (3) for B, we need
to choose a variable whose evolution equation allows us to track Te. While there are many
such variables available (Te itself, or the ion thermal energy, for example), and while all such
evolutions would agree in smooth flow, not all such equations give the correct behavior at shocks.
In order to guarantee the nearly-adiabatic behavior of electrons, it is necessary to choose the
specific electron entropy se as our variable, and use the evolution equation

∂ρse
∂t

+∇ · (ρuse) = −Te−1∇ · (−κe∇Te) +
ρcv,e
Teτei

(Ti − Te), (5)

which expresses the conservation of electron entropy se (up to heat conduction and electron-ion
heat exchange). As we pointed out above, this is required by the same approximationme/mi → 0
that gives rise to the Biermann effect in the first place.

3. The Biermann Effect At Shocks
By inspection of the Biermann source term in Equation (3) we see that it is proportional to
∇ne×××∇Pe. It follows that field generation by the Biermann effect can only occur if the gradients
of ne and Pe are not aligned. This means that in shocks with planar, cylindrical, or spherical
symmetry, the field generation rate is zero. We must therefore treat non-symmetric shock
surfaces in order to analyze non-trivial cases of field generation. Accordingly, in this subsection,
we set up the basic kinematics of the Biermann effect at general shock surfaces.

To describe the shock surface, we introduce a level function Ψ(x, t), and use it to define the
shock surface Ψ(x, t) = 0. Note that the function Ψ is of no dynamical significance, but is
rather simply a mathematical convenience for describing the shock surface. We will assume that
the shock is moving in the direction of the normal vector n ≡ ∇Ψ/|∇Ψ|, so that the region
Ψ(x, t) > 0 is upstream, whereas the region Ψ(x, t) < 0 is downstream.

We denote the local shock speed along n by D. By considering the motion of the level surface
Ψ(x, t) = 0 it is not difficult to show that

D = −∂Ψ

∂t
/ |∇Ψ| . (6)

The treatment of shock kinematics is complicated by the fact that, as we have noted, the
standard flux term for magnetic field is suspect, because it is not well-defined at a discontinuity.
The usual route to the Rankine-Hugoniot shock conditions, in which one balances the fluxes
on either side of the shock in the rest frame of the shock, is therefore precluded. We adopt an
alternative route that circumvents this difficulty.

To describe a moving MHD discontinuity that coincides with the surface Ψ(x, t) = 0, we
will express a field quantity X by the decomposition X = Xu(x, t)Θ(Ψ) + Xd(x, t)Θ(−Ψ),
where Xu and Xd are continuous functions, and where Θ(Ψ) is a Heaviside step function. After
substituting into field equations, we will find some terms proportional to the Dirac distribution
δ(Ψ), resulting from differentiation of the Heaviside functions. We will refer to the collected
terms of this form as the “shock part” of the evolution equations. Such terms embody Rankine-
Hugoniot jumps, which can thus be efficiently extracted for these non-symmetric shocks. This
trick is also useful for deducing hydrodynamic flux terms, as will also be evident below.

It is convenient to reformulate the Biermann source term using the ideal equation of state
to replace ne with Te, the electron temperature. Assuming an ideal gas equation of state, the
reformulated electric field is

EB ≡ −(kB/e)Te∇ lnPe, (7)

so that the source term due to the Biermann effect in the induction equation is

∂B

∂t

∣∣∣∣
B

= (ckB/e)∇Te×××∇ lnPe. (8)
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An important reason for this reformulation is that as we saw in §2, in the presence of electron
thermal conduction, Te is continuous at the shock, whereas ne is not [18, 21]). As we saw, the
continuity of Te is a consequence of the high mobility of electrons relative to ions, and is therefore
part and parcel of the same approximation that led to the Biermann source term (Equation 2)
in the first place. It is central to the developments that follow.

Using this reformulation, we may write for the induction equation

∂B

∂t
= ∇ · {Bu− uB}+

ckB
e
∇Te×××∇ lnPe. (9)

Plugging in the discontinuous form for the various field variables, and respecting the continuity
of Te and of the normal magnetic field, we obtain

∇ lnPe = Θ(Ψ)∇ lnPe,u + Θ(−Ψ)∇ lnPe,d + [lnPe]
u
d δ(Ψ)∇Ψ (10)

∇Te = Θ(Ψ)∇Te,u + Θ(−Ψ)∇Te,d (11)

B = Bnn + BTuΘ(Ψ) + BTdΘ(−Ψ) (12)

u = uuΘ(Ψ) + udΘ(−Ψ) (13)

After plugging Equations (10-13) and Equation (6) into Equation (9) and isolating the Dirac
δ-function term in the resulting equation, we obtain the corrected Rankine-Hugoniot equation

[(D − un)BT ]ud +Bn [uT ]ud +
ckB
e
∇Te××× n [lnPe]

u
d = 0. (14)

In this equation, uT and BT are respectively the fluid velocity and magnetic field component
transverse to the shock, while un and Bn are the longitudinal velocity and field components.
The notation [. . .]ud means the difference of the upstream and downstream values at the shock
location. The first two terms in Equation (14) comprise the usual jump condition for the
induction equation (see Chapter 7 of [25] for example). The final term is the contribution to the
jump condition from the Biermann effect, which, in consequence of the continuity of Te is seen
to produce a finite, well-defined discontinuity at the shock.

We conclude from the above development that the Biermann source term is mathematically
well-defined even at weak solution discontinuities, and yields definite finite predictions to which
a properly designed numerical algorithm should be expected to converge.

4. Correcting the algorithm
The origin of the Biermann catastrophe may be diagnosed by means of a calculation described in
[26]. It can be shown that even in simulations in which one expects that ∇Pe ∝ ∇ne, the discrete
representation of the curl of the “irrotational” Biermann electric field,∇×××

(
ne

−1∇Pe
)
, diverges as

O(∆−1) at a discontinuity. Consequently, at discontinuities, the “naively discretized” Biermann
electric field grows spurious solenoidal behavior that diverges with increasing resolution.

To design a better algorithm we need a flux of B along n that is well-behaved at shocks, unlike
the flux cn×××EB = −(ckB/e)Ten×××∇ lnPe that would be inferred from the naive Biermann term.
To obtain such a flux, we can reverse the usual logic of the Rankine-Hugoniot jump conditions:
instead of deriving the jump from the flux, we can infer the flux from the jump!

In terms of the flux FΦ of a generic field variable Φ, the Rankine-Hugoniot condition at a
shock traveling with speed D along the unit normal n is given by

D × [Φ]ud = [n · FΦ]ud . (15)

Comparing this expression to the corrected Rankine-Hugoniot jump condition for B given in
Equation (14) we may immediately infer the corrected flux of B:

n · FB = (n · u)BT − (n ·B)uT +
ckB
e

lnPen×××∇Te. (16)
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Figure 1. Smooth test in a cartesian box. In both panels we show the magnetic field
generated after one computational step for the correct and naive flux formulations (left and
right respectively). Both methods recover the analytical solution of Equation (17).

The third term in this expression is the correction due to the Biermann term, which is manifestly
well-defined at discontinuities. From the form of Equation (16), only the tangential components
of B are subject to change according to the Rankine-Hugoniot condition, as expected.

Discretization of the Biermann effect based on this flux expression is convergent so long as
the mesh resolves the scales on which Te is continuous. The scale at which Te is continuous is
the scale length λT of the electron thermal conduction precursor region [18, 19, 21], discussed
in §2. This length scale is characteristic of the variation of temperature perpendicular to the
shock; however, it is also the length scale over which heat diffuses transversely during the time
required for the shock to travel a distance λT (and hence traverse its own thermal precursor). It
is therefore the scale to be resolved in order for the discretization of Equation (16) to converge.
At coarser resolutions, Te appears as discontinuous at shocks as all the other fluid variables, and
the discretization discussed here will not yield converged results for B. Only as the thermal
precursor zone is resolved can convergence be expected.

5. Numerical Verification
5.1. Implementation Using the FLASH Code
We have implemented the corrected Biermann Effect algorithm within the publically-available
FLASH hydrodynamic simulation framework [16, 27, 28]. FLASH is a modular and extensible
multiphysics scientific simulation software package that has been widely used for reactive
compressible flows typical of astrophysical situations, High-Energy Density Physics (HEDP)
applications, cosmology, computational fluid dynamics, and fluid–structure interactions. In
particular, FLASH makes available both a 2-temperature single-fluid model and resistive MHD,
which makes it an ideal platform for testing the proposed algorithm.

We incorporated the new flux term represented by Equation (16) into the FLASH MHD
solver. FLASH also supports electron entropy advection, Equation (5), with the standard
Sackur-Tetrode equation for entropy (see, for example, p. 77 of [29]) implemented in the EOS.

5.2. Smooth flow
The first test problem considers a smooth electron density and pressure configuration for which
the analytic calculation of the magnetic field generation due to the Biermann Effect is trivial.
We employ this test to verify the implementations of the naive and correct flux formulations,
which should both be able to recover the analytic solution. This non-dimensional 2D problem
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Figure 2. Null test using a spherical shock. Left panel: electron temperature distribution for
a near-Sedov explosion. Middle panel: Bφ due to numerical noise. Right panel: Total magnetic
energy as a function of simulation resolution, showing convergence of the new algorithm and
convergence failure of the old source term and flux term algorithms.

is drawn from [30] and assumes an initial condition of B = 0, u = 0, ne = n0 +n1 cos(kx x), and
Pe = P0 + P1 cos(ky y), where kx = ky = π/10, n0 = P0 = 1, and n1 = P1 = 0.1. The cartesian
domain spans from −10 to 10 in x and y, with periodic boundary conditions on both directions.
The resulting magnetic field generation rate in the z direction will then be

∂Bz
∂t

= −kx ky n1 P1 sin(kx x) sin(ky y)

[n0 + n1 cos(kx x)]2
(17)

As in [30], we use a resolution of [160 × 160] points and take one step, ∆t = 0.05, to recover
the analytic solution for both implementations. Both results agree with the analytic solution
(Figure 1) within an error of ∼ 2× 10−8 (see also figure 6 in [30]).

5.3. Shocked flow
In the simulations that follow, we assume fully-ionized Hydrogen – A = 1, Z = 1, adiabatic
index γ = 5/3, cv,e = 3

2kBNA, where NA is Avogadro’s number and kB is Boltzmann’s constant.
Simulations are conducted in cylindrical coordinates, assuming azimuthal symmetry, and are
therefore 2-dimensional. In addition, we impose a reflection boundary on the R-axis (where R
is perpendicular distance from axis of rotational symmetry, which is to say, R is the cylindrical
radius) so that the domain represents a hemisphere of a solution with reflection symmetry about
that axis. In every case, the domain is 4 cm radius cylinder that extends 4 cm in the z direction
from the R axis. The boundary conditions at R = 4 cm and at z = 4 cm are outflow. Magnetic
fields are always azimuthal in these verification tests – since the gradients of Te and Pe are
always in the R− z plane the Biermann effect only generates non-zero field along the azimuthal
direction. These simulations are described in greater detail in [26].

It is not easy to construct a non-trivial analytic verification solution of a plasma shock
magnetized by the Biermann effect. However, a trivial solution may be constructed by imposing
symmetry requirements that align the gradients ∇Pe and ∇Te, thus guaranteeing zero field
generation. We use a spherical Sedov-like explosion as an example of such a test. This is in fact
the test that revealed the Biermann catastrophe in the first place [17].

The results of this study are shown in Figure 2. The left panel shows the electron temperature
Te and the middle panel shows the magnetic field strength generated by the corrected treatment
using the flux in Equation (16). We see spurious non-zero field due to numerical noise. However,
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Figure 3. Results for an ellipsoidal shock. Top left: pressure distribution; Bottom Left:
magnetic field distribution. The solid red line displays the location of the shock, while the
red arrows display the direction of the shock normal; Middle Panels: Cumulative distribution
of the normalized magnetic shock condition C, defined by Equation (21), evaluated at points
along the shock surface, for four different resolutions, illustrating convergence to the correct
jump condition for the corrected algorithm (top panel), and convergence failure for the naive
algorithm (bottom panel); Right Panels: Total magnetic energy as a function of simulation
time for the four resolutions studied, for the corrected algorithm (top panel) and for the naive
algorithm (bottom panel).

the right panel shows that this field is converging to zero with increasing resolution. This figure
displays the square-root of the total magnetic energy in the domain. Since the analytic solution
for the magnetic field strength is zero everywhere, this quantity functions as an un-normalized
L2-norm of the difference between the analytic and numerical solutions. The blue circles show
the convergence with resolution of the correct formulation. This convergence behavior is in
contrast to the behavior of two algorithms that use the uncorrected Biermann term (a flux-
based formulation, and a source term), which fail altogether to converge.

Next we exhibit simulations designed to produce non-zero values of the magnetic field
strength. We start an ellipsoidal shock surface, obtained by distorting the spherical Sedov
solution. The state of the shock after a period during which magnetic field is generated is
illustrated by the pressure colormap plot in the top-left panel of Figure 3. The lower-left panel
of Figure 3 shows the magnetic field intensity generated according to the corrected flux, ranging
into the tens of Gauss. The solid red line in the figure shows the shock location, while the red
arrows display the shock unit normal vector.

We do not have an analytical solution for the magnetic field distribution to compare to
the output of these simulations. We do, however, have the relation between shock quantities
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expressed by Equation (14), which determines the jump condition for B. By locating points
adjoining the shock, and computing the local shock velocity at those points, we can then verify
that Equation (14) in fact obtains, to some accuracy limited by the numerical approximation.

To perform this verification, we first locate cells adjoining the shock by the method described
in the Appendix of [26], which yields a 1-cell wide shock surface by fitting the mass, momentum,
and energy Rankine-Hugoniot conditions to the neighboring data, using a speed-of-sound
weighted inner-product on the state space, and treating the shock speed D as a free fit parameter.
The fitted shock speed is then used in the verification of Equation (14).

In the absence of normal component field Bn, Equation (14) becomes

(D−ud)Bd−(D−uu)Bu+
ckB
e

(
nz
∂Te
∂R
− nR

∂Te
∂z

)
[lnPe,d − lnPe,u] ≡ ad−au+bd−bu = 0, (18)

where we’ve defined “Advection” terms ad,u and “Biermann” terms bd,u by

ad,u ≡ (D − ud,u)Bd,u (19)

bd,u ≡ ckB
e

(
nz
∂Te
∂R
− nR

∂Te
∂z

)
lnPd,u (20)

The sum of terms in Equation (18) is required to be zero. In a discretized numerical PDE
integration, this really means that the terms must cancel up to some truncation or rounding
precision, which is expressed relative to the largest of the magnitudes in play. We therefore
define the “shock condition parameter” C by

C ≡ ad − au + bd − bu
max(|ad|, |au|, |bd|, |bu|)

. (21)

We calculate the value of C at cells along the shock front, at each of our four resolution
levels, for both the correct flux and the “naive” flux implementations. At the highest resolution
(1024×1024) the electron precursor length is spanned by about 50 cells, while at the lowest
resolution (128×128) it is only spanned by about 6 cells. We therefore expect substantial
improvement in the computation of field generation as resolution is progressively refined.

We display cumulative distributions of C for corrected and “naive” flux implementations
in the middle panels of Figure 3. It is evident from these figures that the distribution of C
is in fact centered near zero for both flux implementations. The width of the distributions
behave very differently, however. In the case of the correct Biermann flux implementation, the
distributions get narrower with each refinement of resolution – the steepening of the cumulative
profile shows that RMS deviations of C from zero shrink progressively with increasing resolution.
This provides some evidence of convergence with resolution to the expected result. In the case
of the naive flux implementation, there is no such evidence of convergence.

The right panels of Figure 3 show the evolution of total magnetic energy in the domain as a
function of time, for the different resolutions and for the two flux implementations. The correct
flux implementation appears to be converging (although not in any strong sense converged) by
this measure, even at late time, whereas any evidence of convergence in magnetic field energy is
simply lacking for the naive flux implementation.

6. New Physics: The Resistive Magnetic Precursor
Recall the physical basis for the electron conduction shock precursor: a balance of heat diffusion
out of the shock and heat advection into the shock, in the presence of impulsive heating at the
shock. A similar effect occurs for B in the presence of finite resistivity η: the balance of magnetic
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Figure 4. Left Panel: Magnetic field distribution due to passage of shock, in the presence of
finite resistivity. The simulation differs from the one shown in Figure 3 only by the presence
of non-zero resistivity. The solid red line shows the location of the shock, while the vectors
represent the unit normal to the shock. The magnetic precursor can be clearly seen ahead of
the shock surface. The white dashed shock-crossing line illustrates the location of the data
displayed in the right panel. Right Panel: Magnetic field strength magnitude along the white
dashed shock-crossing line shown in the left panel. The position of the shock is shown by the
vertical solid red line. The predicted exponential decay of the precursor is evident.

diffusion out of the shock with magnetic advection into the shock in the presence of impulsive
magnetogeneration by the BBT at the shock gives rise to a resistive magnetic shock precursor.

As shown in [26], the precursor is exponential, with a skin depth λB = c2η
4πD . Assuming

Spitzer-type diffusion, λB scales as follows:

λB = 16.4 cm× Z × ln Λ

10
×
(

D

106 cm s−1

)−1

×
(
kBTe
1eV

)−3/2

The scales chosen here are not atypical of the conditions that can be created in a plasma at a
large laser facility. Potentially this effect could be the basis of an HEDP validation experiment.

We confirm the presence of this precursor using simulations that maintain the simulation
parameters of the ellipsoidal shock described in the previous section, but also turn on the
resistivity η to a finite positive value chosen to yield an easily-discernible precursor

The left panel of Figure 4 shows the distribution of magnetic field strength across the domain.
The shock location is shown by the solid red line, and the superposed vectors indicate the shock-
normal direction. The magnetic field is evidently smoothed out by the resistivity, as can be seen
by a direct comparison with the bottom-left panel of Figure 3. The precursor is evident in this
figure, as the substantial amount of magnetic field that has “leaked” ahead of the shock.

The diagonal white dashed shock-crossing in the left panel of Figure 4 illustrates the line
along which data was extracted to produce the right panel of Figure 4. This figure shows the
magnetic field values plotted along that line. The vertical solid red line at X = 0 marks the
location of the shock. The exponential decay of the field is easily visible in this figure.
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