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Abstract. This paper presents a new hydrodynamic model of interacting galaxies based on
the joint solution of multicomponent hydrodynamic equations, first moments of the collisionless
Boltzmann equation and the Poisson equation for gravity. Using this model, it is possible
to formulate a unified numerical method for solving hyperbolic equations. This numerical
method has been implemented for hybrid supercomputers with Intel Xeon Phi accelerators. The
collision of spiral and disk galaxies considering the star formation process, supernova feedback
and molecular hydrogen formation is shown as a simulation result.

Introduction
The collisions between galaxies as they move in dense clusters is an important evolutionary factor
because an ordinary galaxy can experience up to ten collisions with other galaxies in the Hubble
time [1]. Observational and theoretical investigation of interacting galaxies is an indispensable
method for studying their properties and evolution. The processes of star formation [2], AGN
[3], the formation of supermassive binary black holes [4, 5], and chemodynamics [6] significantly
accelerate the collision of galaxies. On the subject of research on collision of galaxies, it is
worth mentioning the GALMER project of the Parisian observatory. This project consists of a
database of computing experiments [7] on collisions of various types of galaxies.

The collisionless components of galaxies are usually described by means of the N-body model.
This model is standard for this problem but also has some disadvantages. From the perspective
of subgrid physical processes, the N-body model does not allow the total energy of a system
to be maintained. As with the star formation processes (or explosion of supernova stars), we
can keep only the mass of the system and the moment of an impulse. However, in this case,
the thermodynamic coherence of the system is lost. That is, in the case of phase transition
from gas, it is impossible to transform internal energy to particles. From the perspective of a
numerical method, it is rather difficult to coordinate methods for the solution of hydrodynamic
equations and particle dynamics. This is connected with the need to provide a sufficient number
of particles in the case of a combination with mesh-based methods. The problem is partially
solved by SPH methods, but they have shortcomings that will be described further. In the case
of PIC methods, parallel realizations require many difficult algorithms of load balancing.
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Advantages of SPH: Advantages of AMR:
Robustness of algorithm Approved methodology

Galilean invariant Lack of artificial viscosity
Simplicity of realization Correctness on a shock wave

Adaptation for geometry of a problem Turbulence Reproduction
High precision of gravity Reproduction of instability

SPH disadvantages: AMR disadvantages:
Artificial viscosity Complexity of realization

Radius of smoothing Mesh effects
Oscillation on shock waves Problem of mesh resolution
Suppression of instability Problem of invariancy

Weak scalability Weak scalability

Table 1. Advantages and disadvantages of SPH and AMR methods

As an alternative to the N-body model, there is a model based on the first moments of the
Boltzmann equation [8]. The possibility of using this model for the description of the collisionless
components of colliding galaxies [9] was experimentally proved. Sufficient conditions for the
Boltzmann equation model are clustering star components, prevailing kinetics of the system and
a lack of heat transfer effects.

In the last two decades, from the wide range of hydrodynamic numerical methods for
the solution of nonstationary three-dimensional astrophysical problems, two main approaches
have been used: the Lagrangian approach, which is generally presented by the SPH method
(Smoothed Particle Hydrodynamics), and the Euler approach, which uses adaptive grids or
AMR (Adaptive Mesh Refinement). In the last five years, several codes have been developed
as combinations of Lagrangian and Euler approaches. The Lagrangian approach (SPH method)
is used in Hydra [10], Gasoline [11], GrapeSPH [12], GADGET [13] packages. The Eulerian
approach (including AMR) is used in NIRVANA [14], FLASH [15], ZEUS [16], ENZO [17],
RAMSES [18], ART [19], Athena [20], Pencil Code [21], Heracles [22], Orion [23], Pluto [24],
CASTRO [25] codes. The Eulerian approach with AMR was first used on hybrid supercomputers
equipped with graphic accelerators in a GAMER code [26]. The advantages and disadvantages of
these methods are given in table 1. BETHE-Hydro [27], AREPO [28], CHIMERA [29], GIZMO
[30], and author’s PEGAS/GPUPEGAS/AstroPhi [9, 31, 32] codes are based on Lagrangian and
Eulerian approaches. This combination of methods solves the main problems of the approaches
as described above.

In the first section, we will describe the mathematical model of the interacting galaxies. We
will describe a numerical method of the solution and parallel realization in the second section.
In chapter 3, the results of the computational experiment of spiral and disk galaxy collision will
be shown.

1. Mathematical model
To account for chemical reactions, we will consider the equations of multicomponent single-
speed gas dynamics. For the description of collisionless components, we will use the equations
for the first moments of the collisionless Boltzmann equation. Our model includes star formation
processes, supernova feedback, formation of molecular hydrogen and the cooling/heating
function.

To describe the gas components, we will use the system of single-speed component
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gravitational hydrodynamics equations, which is written in Euler coordinates:

∂ρ

∂t
+∇ · (ρu⃗) = S − D,

∂ρu⃗

∂t
+∇ · (ρu⃗u⃗) = −∇p− ρ∇(Φ) + v⃗S − u⃗D,

∂ρH
∂t

+∇ · (ρH u⃗) = −sH,H2 + S ρH
ρ

−DρH
ρ
,

∂ρH2

∂t
+∇ · (ρH2 u⃗) = sH,H2 + S ρH2

ρ
−DρH2

ρ
,

∂ρE

∂t
+∇ · (ρEu⃗) = −∇ · (pv⃗)− (ρ∇(Φ), u⃗)− Λ + Γ + ε

S
ρ
− ε

D
ρ
,

∂ρε

∂t
+∇· (ρϵu⃗) = −(γ− 1)ρϵ∇· u⃗−Λ+Γ+ ε

S
ρ
− ε

D
ρ
, ρE =

1

2
ρu⃗2+ ρε, p = (γ− 1)ρε.

To describe the collisionless components, we will use the system of equations for the first moments
of the Boltzmann collisionless equation, which is also written in Eulerian coordinates:

∂n

∂t
+∇ · (nv⃗) = D − S, ∂nv⃗

∂t
+∇ · (nv⃗v⃗) = −∇Π− n∇(Φ) + u⃗D − v⃗S,

∂ρW

∂t
+∇ · (ρWv⃗) = −∇ · (Πv⃗)− (n∇(Φ), v⃗) + ε

D
ρ
− ε

S
ρ
,

∂Πξξ

∂t
+∇ · (Πξξ v⃗) = −2Π∇ · u⃗+ ε

D
3ρ

− ε
S
3ρ

, ρW =
1

2
ρv⃗2 +

Πxx +Πyy +Πzz

2
.

The Poisson equation can be written as:

∆Φ = 4πG(ρ+ n),

where p – gas pressure, ρH – density of atomic hydrogen, ρH2 – density of molecular hydrogen,
sH,H2 – speed of formation of molecular hydrogen from atomic, ρ = ρH + ρH2 – density of gas
mixture, n – density collisionless component, u⃗ – speed gas component, v⃗ – speed collisionless
component, ρE – density of total mechanical gas energy, ρW – density of total mechanical
collisionless components energy, Φ – gravitational potential, ε – density of internal energy of
gas, γ – adiabatic index, Πξξ = (Πxx,Πyy,Πzz) – a diagonal tensor of dispersion of speeds
collisionless components, S – the speed of formation of supernova stars, D – star formation
speed, Λ – function of Compton cooling, Γ – function of heating from explosion of supernova
stars.

Hydrogen molecules in intergalactic space are formed on a surface of particles and dissociated
space radiation. Assuming that the density of gas is proportional to the density of particle
concentration of molecular hydrogen [33] because of the good mixing of particles and gas in our
model, it can be written as:

dnH2

dt
= Rgr(T )nH(nH + 2nH2)− (ξH + ξdiss(NH2 , AV ))nH2 ,

where nH2 and nH – concentration of molecular and atomic hydrogen, NH2 – the column density
of molecular hydrogen, speed of formation of molecular hydrogen on dust is set by function
[34] of Rgr(T ) = 2.2 × 10−18S

√
T s−1, where S =0.3 – efficiency of formation of molecular

hydrogen on dust [35], speed of ionization of hydrogen by the space beams is set by function
[36, 37] ξH = 6 × 10−18 s−1, where Av – extinction [38]. Photodissociation rate in the form
of [39] ξdiss(NH2 , AV ) = ξdiss(0)fshield(NH2)fdust(AV ), where ξdiss(0) = 3.3 × 1.7 × 10−11s−1

– unshielded photodissociation rate [40], fdust(AV ) = exp(−τd,1000(AV )) – absorption rate on
dust [39], where τd,1000(AV ) = 3.74AV = 10−21 (NH +NH2) – optical depth on dust particles on
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wavelength λ = Å1000, where NH and NH2 – column density. The function of the coefficient of
self-shielding can be approximated [39]:

fshield(NH2) =
0.965

(1 + x/b5)2
+

0.035√
1 + x

exp
(
−8.5× 10−4

√
1 + x

)
,

where x = NH2/5 × 1010 m2, b5 = b/107 m/s, where b – the parameter of Doppler expansion.
After calculation of molecular hydrogen concentration nH2 , the adiabatic index [41] is defined:

γ =
5nH + 7nH2

3nH + 5nH2

The equation for the description of hydrogen concentration dynamics has the analytical solution
which was used in realization.

We will use the following necessary condition of process of star formation formulated in the
form of [42]:

T < 104K ▽ ·u⃗ < 0 ρ > 1.64
M⊙
pc−3

The speed of star formation can be formulated as D = Cρ3/2
√

32G
3π , where C = 0.034 – star

formation efficiency. Speed of supernova stars formation [43] can be written as S = βCn3/2
√

32G
3π ,

where β = 0.1 – coefficient of young stars explosion. The explosion energy of one solar mass star

emitted is 1051 erg. In this case the heat function can be written as Γ = 1051M
SN

M⊙
erg, where

MSN – the mass of supernova stars in local volume.
The galactic gas which is warmed by collisions to temperature ∼ 104 − 108 K is described by

the cooling function [44] Λ ≃ 10−22n2
Hcm−3 erg , where nH – concentration of atomic hydrogen.

2. Numerical method
To solve the hydrodynamic equations, the original numerical method based on a combination
of the operator splitting approach, Godunov’s method, the Roe scheme and piecewise-parabolic
reconstruction on a local stencil [45, 46] was used. This method unites all advantages of these
methods and can be highly parallelized. To solve the Poisson equation, the FFT method is used.

At the Eulerian stage of a numerical method, the equations without the advective members
and subgrid functions are solved. To approximate the spatial derivatives, the solution to a
problem of the linearized Riemann’s problem is used. For this purpose, the average speed and
pressure (L – left cell, R – right cell) is calculated as follows:

ρ =
ρ
3/2
L + ρ

3/2
R√

ρL +
√
ρR

, p =
pL

√
ρL + pR

√
ρR√

ρL +
√
ρR

.

This method of averaging is associated with accurate computation of the gas vacuum border.
This averaging is more accurate than the original Roe scheme [47]. We will assume that the
solution is a piecewise parabolic function in the considered cells. The detailed procedure of local
parabola creation can be found in classical literature [48]. This procedure also must be used in
the subsequent stage (the solution of Riemann’s problem) of the method.

The solution of Riemann’s problem (a detailed description of Godunov’s scheme can be found
in [49]) for the Eulerian stage can be written as:

U =
uL(−λt) + uR(λt)

2
+

pL(−λt)− pR(λt)

2

√√√√ (
√
ρL +

√
ρR)2

γL+γR
2 (ρ

3/2
L + ρ

3/2
R )(pL

√
ρL + pR

√
ρR)

,
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P =
pL(−λt) + pR(λt)

2
+

uL(−λt)− uR(λt)

2

√√√√ γL+γR
2 (ρ

3/2
L + ρ

3/2
R )(pL

√
ρL + pR

√
ρR)

(
√
ρL +

√
ρR)2

,

for collisionless component:

V =
vL(−µt) + vR(µt)

2
+

ΠL(−µt)−ΠR(µt)

2

√√√√ (
√
nL +

√
nR)2

3(n
3/2
L + n

3/2
R )(ΠL

√
nL +ΠR

√
nR)

,

Π =
ΠL(−µt) + ΠR(µt)

2
+

vL(−µt)− vR(µt)

2

√√√√3(n
3/2
L + n

3/2
R )(ΠL

√
nL +ΠR

√
nR)

(
√
nL +

√
nR)2

where

λ =

√√√√ γL+γR
2 (pL

√
ρL + pR

√
ρR)

ρ
3/2
L + ρ

3/2
R

, µ =

√√√√3(ΠL
√
nL +ΠR

√
nR)

n
3/2
L + n

3/2
R

,

qL(−νt) = qRi − νt

2h

(
△qi − q6i

(
1− 2νt

3h

))
, qR(νt) = qLi +

νt

2h

(
△qi + q6i

(
1− 2νt

3h

))
.

At the Lagrangian stage there is an advective transfer of hydrodynamic parameters and all
equations can be written as:

∂f

∂t
+∇ · (fv⃗) = 0,

where f can be density ρ, n, can be impulse ρu⃗, nv⃗, total mechanically density ρE, nW or
internal ρϵ,Πξξ energy of gas. A similar approach is used for the equations. This equation:

F = v ×
{

fL(−λt), v ≥ 0
fR(λt), v < 0

,

is used for flux computation F = fv⃗ with λ = |v⃗|. where fL(−λt) fR(λt) – piecewise-parabolic
function for f . The velocity on the interface between cells is calculated by:

v =
vL

√
ρL + vR

√
ρR√

ρL +
√
ρR

.

To create the piecewise and parabolic solution, the same procedure as in the previous stage is
used. At the final stage of the hydrodynamic equations, a solution adjustment procedure is
provided. In the case of a gas vacuum border, we use the procedure from [50]:

|v⃗| =
√
2(E − ϵ), (E − v⃗2/2)/E ≥ 10−3,

In the other area, an adjustment is used to guarantee non-decreasing entropy [51]:

|ρϵ| =
(
ρE − ρv⃗2

2

)
, (E − v⃗2/2)/E < 10−3,

This modification provides a detailed balance of energy and guarantees non-decreasing entropy.
The numerical method was verified on many problems: 1D problems of shock tube simulation,

Kelvin–Helmholtz and Releigh–Taylor instabilities, Sedov blast wave problem, expansion of gas
into a vacuum, Evrard’s collapse and other problems. Details of the tests can be found in
[9, 31, 32, 49].
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A geometrical decomposition of the computational area is based on the idea of parallel
realization. The uniform numerical method allows the use of the identical geometrical
decomposition scheme, which facilitates simpler and effective realization. Supercomputers with
the RSC PetaStream-based architecture have been used for performance and scalability tests:
MVS-10P (64x Intel Xeon Phi 7120D accelerators, each of which has 16 GB of integrated RAM,
JSCC RAS). We use a grid size of 5123 on each accelerator for the MVS-10P tests. In our
tests, we cannot use larger grid sizes for simulation of full numerical models. Computational
experiments were performed at the RSC PetaStream architecture cluster of JSCC RAS with
134x acceleration achieved in one Intel Xeon Phi accelerator. We attained 92 % efficiency with
the usage of 64x Intel Xeon Phi accelerators.

3. Numerical experiment
We will simulate the collision of two galaxies as a demonstration of our code with mass
M = 1013M⊙ and velocity vcr = 800km/s. The first galaxy is set by self-gravitating the
spherical clouds for the description of gas and collisionless components with an initial distribution
of density equilibrium. The star component of the second galaxy has a spiral form. The galaxies
are rotating in opposite directions with differential rotation:

vϕ =

√
r
∂Φ

∂r
.

For numerical simulation, a 5123 computational mesh was used. This scenario of galaxy
collision used the same NGC 2936/2937 interacting galaxy scenario. The figures show the
results of the column density distribution of gas and star components. After the process of
collision behind the front of a shock wave, there is an active increase in star formation speed,
and molecular hydrogen is formed in future galaxy zones. It should be noted that the growth
of the formation is observed in an area that corresponds with the spiral form.

Conclusion
In paper the new hydrodynamic model of the interacting galaxies is proposed. This model is
based on the joint solution of the multicomponent gas dynamics equations, the first moments
of the collisionless Boltzmann equation and Poisson’s equation for gravity potential. Using
of this model gave us possibility to formulate a uniform numerical method of the hyperbolic
equations solution. This numerical method is effectively realized for hybrid supercomputers
equipped with Intel Xeon Phi accelerators. Computational experiments were performed at the
RSC PetaStream architecture cluster of JSCC RAS with 134x acceleration achieved in one
Intel Xeon Phi accelerator. We attained 92 % efficiency with the usage of 64x Intel Xeon Phi
accelerators. The collision problem of disk and spiral galaxies with increased star formation rate
area is simulated.
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