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Abstract.
The Aurora experiment to investigate double beta decay of 116Cd with the help of 1.162

kg cadmium tungstate crystal scintillators enriched in 116Cd to 82% is in progress at the Gran
Sasso Underground Laboratory. The half-life of 116Cd relatively to the two neutrino double
beta decay is measured with the highest up-to-date accuracy T1/2 = (2.62 ± 0.14) × 1019 yr.
The sensitivity of the experiment to the neutrinoless double beta decay of 116Cd to the ground
state of 116Sn is estimated as T1/2 ≥ 1.9×1023 yr at 90% CL, which corresponds to the effective
Majorana neutrino mass limit 〈mν〉 ≤ (1.2 − 1.8) eV. New limits are obtained for the double
beta decay of 116Cd to the excited levels of 116Sn, and for the neutrinoless double beta decay
with emission of majorons.

1. Introduction
Observations of neutrino oscillations give a clear evidence of effects beyond the Standard Model of
particles (see, e.g., review [1]) and provide a strong motivation to investigate neutrinoless double
beta (0ν2β) decay of atomic nuclei. The 0ν2β decay violates the lepton-number conservation
and is only possible if neutrino is a massive Majorana particle. Therefore, search for 0ν2β
decay is considered as a promising way to clarify the nature of the neutrino, check the lepton
number conservation, determine the absolute scale of the neutrino mass and the neutrino mass
hierarchy, test the existence of effects beyond the Standard Model, in particular, existence of
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hypothetical Nambu-Goldstone bosons (majorons) and right-handed currents in weak interaction
[2, 3, 4, 5, 6, 7].

The isotope 116Cd is one of the most promising 2β nuclei thanks to the favorable theoretical
estimations of the decay probability ([2, 3]), large energy release Q2β = 2813.50(13) keV [8],
relatively high isotopic abundance δ = 7.49% [9] and a possibility of isotopic enrichment in a
large amount.

Experimental investigations of 116Cd 2β decay were realized by tracking detectors with
enriched cadmium foil as source [10, 11, 12], and by calorimetric approach using CdWO4 crystal
scintillators [13, 14, 15] and CdZnTe room temperature semiconductors [16]. The 2β decay to
excited levels of 116Sn were also searched for with low background HPGe γ detectors [17, 18].
Large volume radiopure cadmium tungstate crystal scintillators were produced from cadmium
enriched in 116Cd to 82% (116CdWO4) to investigate double beta decay of 116Cd [19]. The
crystals show excellent scintillation properties and low level of radioactive contamination [20, 21].
Preliminary results of the Aurora experiment were reported in the conference proceedings
[22, 23]. Here we present recent results of the experiment.

2. Experiment
Two 116CdWO4 crystal scintillators with a total mass 1.162 kg (1.584 × 1024 of 116Cd
nuclei) are installed in the low background DAMA/R&D set-up operated at the Gran Sasso
Underground Laboratory of I.N.F.N. (Italy). The low background set-up with the 116CdWO4

detectors has been modified several times to improve the energy resolution and to decrease
background. In the last configuration of the set-up the 116CdWO4 crystal scintillators are
fixed in polytetrafluoroethylene containers filled with ultrapure liquid scintillator. The liquid
scintillator improves the light collection from the 116CdWO4 crystal scintillators and serves as
an anti-coincidence veto counter. The scintillators are viewed through high purity quartz light-
guides (�7× 40 cm) by low background high quantum efficiency photomultiplier tubes (PMT,
Hamamatsu R6233MOD). The detectors are installed inside a low radioactive copper box flushed
with high pure nitrogen gas with an external shield made of radiopure materials: copper (15
cm), lead (15 cm), cadmium (1.5 mm) and paraffin (4 to 10 cm). The whole set-up is enclosed in
a plexiglas box also flushed with high purity nitrogen gas to remove radon. An event-by-event
data acquisition system based on a 1 GS/s 8 bit transient digitizer (Acqiris DC270) records
time and pulse profile of events. The energy scale and the energy resolution of the detector are
checked periodically with 22Na, 60Co, 137Cs, and 228Th γ sources. The energy resolution of the
116CdWO4 detector for 2615 keV γ quanta of 208Tl is FWHM ≈ 5%.

3. Results and discussion
The energy spectrum of β and γ events accumulated over 12015 h by the 116CdWO4 detectors
is presented in Fig. 1. The β and γ events were selected with the help of two pulse-shape
discrimination methods: the optimal filter method to select α particles, and the front edge
analysis to select Bi–Po events (fast sub-chains 212Bi–212Po and 214Bi–214Po from 232Th and 238U
chains, respectively) from internal contamination of the crystals by U and Th. Besides, both
the pulse-shape discrimination techniques are also sensitive to pile-ups of 116CdWO4 and liquid
scintillator signals. The experimental spectrum was fitted in the energy interval (660 − 3300)
keV by the model constructed from the two neutrino double beta (2ν2β) spectrum of 116Cd, the
distributions of the 116CdWO4 crystal scintillators internal contamination by potassium, thorium
and uranium (taking into account possible disequilibrium of the 232Th and 238U chains), and
the contribution from external γ quanta (from radioactive contamination of the PMTs, quartz
light-guides and copper of the passive shield). Response of the 116CdWO4 detector to the 2β
processes in 116Cd as well as to the radioactive contamination of the set-up were simulated with
EGS4 package [24]. The initial kinematics of the particles emitted in the decay of the nuclei
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was given by an event generator DECAY0 [25]. The fit gives the following half-life of 116Cd
relatively to the 2ν2β decay to the ground state of 116Sn:

T 2ν2β
1/2 = [2.62± 0.02(stat.)± 0.14(syst.)]× 1019 yr.

The main sources of the systematic error are the uncertainties of the radioactive
contamination of the crystal scintillators and of the details of the set-up, and variation of the
effect’s area depending on the interval of the fit. The signal to background ratio is 2.6:1 in the
energy interval (1.1 − 2.8) MeV. The comparison of the 116Cd 2ν2β half-life obtained in the
Aurora experiment with other experiments is given in Fig. 2. The result is in agreement with
the previous experiments [10, 11, 12, 13, 14, 15], however the half-life of 116Cd is determined in
the present study with the highest accuracy.
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Figure 1. The energy spectrum of β
and γ events accumulated over 12015 h
together with the main components of the
background model: 2ν2β decay of 116Cd
(“2ν2β 116Cd”), the distributions of the
internal contamination of the 116CdWO4

crystals by potassium (“int. 40K”), thorium
(“int. Th”) and uranium (“int. U”), and the
contribution from external γ quanta (“ext.
γ”).
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Figure 2. Comparison of the 116Cd 2ν2β half-
life obtained in the Aurora experiment with other
experiments: ELEGANT V [10], Solotvina [13, 14,
15], NEMO-2 [11] and NEMO-3 [12]. A reevaluated
NEMO-2 value [26] is labelled as (NEMO-2)*.

There are no other peculiarities in the experimental data which could be interpreted as 2β
processes in 116Cd. To estimate limit on 0ν2β decay of 116Cd to the ground state of 116Sn we
have used data of two runs with the lowest background in the region of interest: the current
one and the accumulated over 8696 h in the set-up described in [22]. The sum energy spectrum
is presented in Fig. 3. The background counting rate of the detector in the energy interval
(2.7−2.9) MeV (which contains 80% of the 0ν2β distribution) is ≈ 0.1 counts/(yr×kg×keV). A
fit of the spectrum in the energy interval (2560−3200) keV by the background model constructed
from the distributions of the 0ν2β decay of 116Cd (effect searched for), the 2ν2β decay of 116Cd
with the half-life 2.62×1019 yr, the internal contamination of the crystals by 110mAg and 228Th,
and the contribution from external γ quanta gives an area of the expected peak S = −3.7±10.2,
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which gives no evidence of the effect. In accordance with [27] 13.3 counts are excluded at 90%
confidence level. Taking into account the 99% efficiency of the pulse-shape discrimination to
select β (γ) events and 99% efficiency of the front edge analysis (98% in total), we got the
following new limit on the 0ν2β decay of 116Cd to the ground state of 116Sn:

T 0ν2β
1/2 ≥ 1.9× 1023 yr.

The half-life limit corresponds to the effective neutrino mass limit 〈mν〉 ≤ (1.2 − 1.8) eV,
obtained by using the recent nuclear matrix elements reported in [28, 29, 30, 31], the phase
space factor from [32] and the value of the axial vector coupling constant gA = 1.27.
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Figure 3. The energy spectrum of β and
γ events accumulated over 20711 h with the
116CdWO4 detectors in the region of interest
together with the background model: the
2ν2β decay of 116Cd (“2ν2β”), the internal
contamination of the 116CdWO4 crystals by
cosmogenic 110mAg (“110mAg”) and 228Th
(“int. Th”), and the contribution from
external γ quanta (“ext. γ”).

Limits on 2β decay processes in 116Cd to the excited levels of 116Sn, and for the 0ν2β decay
with emission of one (χ), two (2χ) and bulk (χbulk) majorons were derived from the fits of the
data in the energy intervals with a high effect to background ratio. The results are presented
in Table 1. Using the bound on the 0ν2β decay with one majoron emission and the same
calculations of the nuclear matrix elements we have estimated a limit on the effective majoron
neutrino coupling constant gνχ ≤ (5.3− 8.5)× 10−5.

4. Conclusions
The Aurora experiment is in progress to investigate 2β processes in 116Cd by using enriched
116CdWO4 scintillation detectors. The 2ν2β half-life of 116Cd is measured with the highest
up-to-date accuracy: T1/2 = (2.62± 0.14)× 1019 yr. The new improved 0ν2β half-life limit was

set as T1/2 ≥ 1.9 × 1023 yr at 90% CL, which corresponds to the effective Majorana neutrino

mass 〈mν〉 ≤ (1.2− 1.8) eV. New limits on the 2β decay to excited levels of 116Sn and the 0ν2β
decay with emission of one, two and bulk majorons were set at the level of T1/2 ≥ (1020 − 1022)

yr. Using the limit T1/2 ≥ 1.1 × 1022 yr on the 0ν2β decay with one majoron emission we
have obtained one of the strongest limits on the effective majoron neutrino coupling constant
gνχ ≤ (5.3 − 8.5) × 10−5. It is worth noting that we have observed a segregation of thorium,
radium and potassium in the crystal growing process, which provides a possibility to improve
substantially the radiopurity of the 116CdWO4 crystal scintillators by re-crystallization, which
is in progress now.
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