
Journal of Physics: Conference
Series

PAPER • OPEN ACCESS

Directly executable formal models of middleware
for MANET and Cloud Networking and Computing
To cite this article: D. V. Pashchenko et al 2016 J. Phys.: Conf. Ser. 710 012024

View the article online for updates and enhancements.

You may also like
Design of Mobile ad-hoc network scheme
based on SDN
Xiaoyu Huang and Mingxia Su

-

Network Performance Evaluation of
Different MANET Routing Protocols
Configured on Heterogeneous Nodes
Sabah M. Alturfi, Dena Kadhim Muhsen
and Mohammed A. Mohammed

-

Forecast Function Based Congestion
Control in MANET Routing
G Suresh, Senthil Kumar, V Kavitha et al.

-

This content was downloaded from IP address 3.15.229.113 on 04/05/2024 at 09:11

https://doi.org/10.1088/1742-6596/710/1/012024
https://iopscience.iop.org/article/10.1088/1742-6596/2290/1/012123
https://iopscience.iop.org/article/10.1088/1742-6596/2290/1/012123
https://iopscience.iop.org/article/10.1088/1742-6596/1804/1/012124
https://iopscience.iop.org/article/10.1088/1742-6596/1804/1/012124
https://iopscience.iop.org/article/10.1088/1742-6596/1804/1/012124
https://iopscience.iop.org/article/10.1088/1757-899X/925/1/012074
https://iopscience.iop.org/article/10.1088/1757-899X/925/1/012074
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjss7VH99vBX2AuRQzKvqBOFbVL7Q8eUOTmjMfRjq5igcdF_JfDhDGQVRpi27Uxp7W9ImHlr_aVOigJ1VI7wwbq8wVPtgYzn7DVLcLSuDWALZak1oRaznFpixD_go_IUkqCLMVZhB4p25-CpDuOQquNDomETkagqFrAvMXsroAzkBmDvmzVCMxLnFs_oldUINXq5leIde-3bAm4DohIhDRn7bMIBDwjJvq8fUhbPHYBhMsI7LQQCASEPjPtXyZQIc0bAw7Gq_wS7DQOIIlgKCfMDqlEx0NIuWJgXkrg7zV2qlWeoqI7pwlqmur7nL2aUnO91f2UynGS_5FX-qDaVctjTeNouk9g&sig=Cg0ArKJSzIfoX7NxtqB5&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

Directly executable formal models of middleware for MANET
and Cloud Networking and Computing

D. V. Pashchenko1, Mustafa Sadeq Jaafar2, S. A. Zinkin3, D. A. Trokoz4,
T. U. Pashchenko5 and M. P. Sinev6
1 Professor, Penza State University, Penza, Russia
2 Postgraduate, Penza State University, Penza, Russia
3 Professor, Penza State University, Penza, Russia
4 Assistant professor, Penza State University, Penza, Russia
5 Assistant professor, Penza State University, Penza, Russia
6 Assistant professor, Penza State University, Penza, Russia

E-mail: dmitry.pashchenko@gmail.com

Abstract. The article considers some “directly executable” formal models that are suitable for
the specification of computing and networking in the cloud environment and other networks
which are similar to wireless networks MANET. These models can be easily programmed and
implemented on computer networks.

1. Introduction
Several new trends are opening up the era of Cloud Computing, which is an Internet-based

development and use of computer technology. They are cheaper and more powerful processors,
together with the “software as a service” (SaaS) and computing architecture, are transforming data
centers into pools of computing service on a huge scale. Meanwhile, the increasing of networks
bandwidth and their reliability yet flexible network connections make it even possible that clients can
now subscribe some high quality services from data and software that reside solely on remote data
centers or data pools. Although envisioned as a promising service platform for the Internet, the new
data storage paradigm in the “Cloud” brings many challenging design issues which have profound
influence on the security and performance of the overall system. One of the biggest concerns related to
cloud data storage is that of data integrity verification at non trusted servers. What is more serious is
that for saving money and storage space the service provider might neglect to keep whatever is
necessary or delete rarely accessed data files which belong to an ordinary client. Consider the huge
size of the outsourced electronic data and the client’s constrained resource capability, the core of the
problem can be generalized in the theme of how the client can find an efficient way to perform
periodical integrity verifications without needing the local copy of data files. Considering the role of
the verifier in the model where all the schemes presented before are falling into two categories: private
auditability and public auditability. Although schemes with private auditability can achieve
remarkably higher scheme efficiency, public auditability allows anyone, not just the client (data

ScieTech 2016 IOP Publishing
Journal of Physics: Conference Series 710 (2016) 012024 doi:10.1088/1742-6596/710/1/012024

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

owner) to challenge the cloud servers for the correctness of data storage while keeping no private
information.

Then, clients are capable of handing over or to be more specific, to delegate the evaluation of
the service performance to some independent third party auditors (TPAs), without the devotion of their
computation resources. In the cloud, the clients themselves mostly are unreliable or may not be
capable of affording the overhead of performing frequent integrity checks. Router free feature
connecting to files on other computers and/or the Internet without the need of a wireless router is the
main advantage of using an ad hoc network. So because of this, running an ad hoc network can be
more affordable and easier to construct than a traditional network because you don't have the added
cost of a router. However, if you only have one node for example only one computer then it won't be
possible to construct an ad hoc network. Mobility - an Ad hoc network can be created on the fly in
nearly any situation with multiple nodes (wireless devices) which they are existing for the purpose of
connection establishment. For example: emergency situations in some rare and remote locations make
a traditional network nearly impossible, but "For example the medical team in the army can easily
utilize 802.11 radio NICs in their laptops and PDAs and other wireless devices and enable broadband
wireless data communication as soon as they reach their destination. "The other feature is the Speed -
creating an Ad hoc network from scratch is remarkably fast and only requires a few setting tunings
and some changes and no additional hardware or software.

2. The results of previous works

Mobile ad hoc networks (MANET) consist of nodes that are able to communicate through the
use of wireless mediums and form dynamic network topologies. The basic characteristic of these
networks is the complete lack of any kind of infrastructure and the absence of any dedicated nodes that
provide network management operations as the role of the traditional routers in fixed kinds of
networks. In order to maintain the connectivity in a mobile ad hoc network all the nodes have to
perform routing of network traffic. The cooperation of the nodes in an ad hoc network cannot be
enforced by a centralized administration authority since one does not actually exist. Therefore, a
network-layer protocol that is designed for such self-organized networks must enforce the connectivity
and the security requirements in order to guarantee the undisrupted other operations of the higher layer
protocols. Unfortunately most of the widely used ad hoc routing protocols have no high security
considerations and trust all the participants (the nodes) to correctly forward routing and data traffic.

Proposed by one of the authors of this article in [1, 2, 3] modified Ack-Based scheme
(Acknowledgment-Based) for node authentication with AODV (Ad hoc On-Demand Distance Vector)
existing protocol in MANET. Ack-Based scheme also provides the possibility of detecting wormhole
attacks and nodes misbehavior in ad hoc networks. Different researcher proposed different scheme for
Ack-Based for providing security in mobile ad hoc network. But all the other proposed techniques
suffered common problem that problem is the generation of huge amount of pack overhead and node
ambiguity. Actually due to this problem the given scheme is not used in a general form. So we
proposed the Ack-Based scheme with the help of finite state machine against the malicious nodes. The
authors propose the 2Ack based scheme to detect the malicious links and to mitigate their malicious
effects. This scheme is based on a 2Ack packet that is actually assigned a fixed route of two hops in
the reversed/opposite direction of the received data between the sender and the receiver. In this
scheme, each sender’s packet maintains the following parameters; (i) list of identifiers of data packets
that have been sent out but haven’t been yet acknowledged, (ii) a counter of the forwarded data
packets, (iii) a counter of the missed data packets. According to the value of the acknowledgements
ratio (Rack), only a certain fraction of the sent data packets will be acknowledged in order to reduce
the resulted overhead. This technique overcomes some of the weaknesses of the Watchdog/path rater
such as: ambiguous collisions, receiver collisions and power control transmissions. Both of the
previous presented works remain vulnerable to the attacks that are launched by groups of other
malicious nodes. To encounter these attacks, must provide a framework to mitigate the damage caused
by the colluding black hole attacks in AODV. The proposed technique actually has a moderate

ScieTech 2016 IOP Publishing
Journal of Physics: Conference Series 710 (2016) 012024 doi:10.1088/1742-6596/710/1/012024

2

overhead that is induced by the ACK which has been sent back by the destination node during selected
intervals of data transfer periods. Throughout the data packets transmissions, a flow of special data
packets is transmitted at random intervals of time along with the data. The reception of these special
data packets invokes the destination to actually send out an ACK through different multiple routing
paths. The ACK data packets take multiple routes to reduce the actual probability that all of the ACKs
are getting dropped by the malicious nodes, and also to encounter for possible loss due to several
broken routes or congestions in some certain nodes. If the source node does not get back any ACK
packet, then it becomes aware of the presence of some potential attackers in the forwarding path. As a
reaction to that, it broadcasts a list of suspected malicious nodes in order to isolate them from the
network’s routing table.
Without a fixed infrastructure and with the node mobility feature in ad hoc networks it is a great
challenge as concerning the security issue. For security concerns various methods are used to enhance
node authentication in mobile ad hoc networks. The authentication scheme of leader agent node and
members of surveillance greatly reduces the relative calculating overheads and the communication
costs. Generally, when leader agent node and surveillance nodes are not getting destroyed, the united
nodes can effectively ensure the reliability and the authentication results will be more reliable.
Suggestion for future work is to apply the modified Ack-Based FSA (Finite State Machine) scheme to
other protocols to overcome the requirement of the memory, during the path discovery and path
establishment it takes a little bit much time in comparison with normal Ack-Based schemes and also
future minimized route calculation with finite state machine. Here in [1, 2, 3] proposed Modified
ACK-Based scheme for node authentication with AODV existing protocol in MANET. ACK-Based
scheme also provides the capability of detecting the wormhole attacks and node misbehaviors in ad
hoc networks. Different researcher proposed different scheme for ACK-Based for providing security
in mobile ad hoc network. But all these techniques suffered from a common problem which is the
generation of huge amount of pack overhead and node ambiguity. Actually due to this problem the
given scheme is not used in a general form. So we proposed the ACK-Based scheme with the help of
the finite state machine concept for controlling the generation of data packets and also improve the
performance of AODV protocol. Here first we will discuss basic ACK-Based scheme and then we will
discuss the finite state machine and finally we will discuss the combined approach for ACK-Based
scheme.

When a malicious node is receiving an application packet from a node and that packet is
actually destined for some other node then instead of forwarding that packet, it simply just drops that
application packet. This data loss may become severe when the number of malicious nodes present in
network is becoming high. In the proposed work, we overcome this problem by identifying this kind
of malicious behavior of nodes and then a route via such a node is never being chosen by its
neighboring node to forward an application packet in the network.

When a node wants to send an application packet to another node which is not its immediate
neighboring node then it sends a RREQ (request) packet to all of its neighboring nodes. If a neighbor
knows a route to the destination of this packet then it sends a RREP (reply) packet that contains the
next hop address to which the mentioned neighboring node will forward the packet to. Let us call this
next hop address as the next to next hop address instead. The algorithm is described as follow:
1. The sender node forwards the application packet to one of its immediate neighbors delegating the

responsibility of further forwarding it to that neighboring node which is the destined one. The
sender also sets a timer (which is twice the network’s diameter) to receive the acknowledgement
from the destination node.

2. If an acknowledgement is received before the timer expires then the route is considered to be
trusted/ valid and no further action is needed to be taken.

3. If the timer expires and an acknowledgement is not yet received then the route is not considered to
be trusted/ valid. Now the sender sends an application packet to the next to next hop address node
and again sets a timer to receive an acknowledgement.

ScieTech 2016 IOP Publishing
Journal of Physics: Conference Series 710 (2016) 012024 doi:10.1088/1742-6596/710/1/012024

3

 If the acknowledgement is received before the timer expires then the neighboring node is
considered to be trusted and no further action will be needed, otherwise the neighboring node is
considered as a half-trusted. In this situation, this half-trusted node will be under observation until
it shows the same malicious behavior all over again when an application packet is forwarded to it
the next time.

4. If the half-trusted node does not show any other malicious behavior when the application packet is
forwarded to it the next time then it will be considered as a trusted-node, otherwise this half-
trusted node will be considered as a malicious one and therefore the following actions will be
performed:
 No more RREP messages from this node will be considered.
 The application packets will no longer be forwarded to this node.
 New routes will be found and discovered in order to forward the application packets to those

destinations that are having this un-trusted (malicious) node as the next hop address in the
routing table.

3. Some “reconfigurable” directly executable formal models, suitable for the specification of
computing and networking in the cloud environment and other networks similar to wireless
networks MANET

The distributed programming computational infrastructures of Cloud and MANET networking
and computing available globally for offering uniform services has become an important topic in
Computer Sciences. The challenges are coming from the necessity of dealing at once with issues like
the security, privacy, failures, communications, co-operation, mobility, resources usage, etc., in a
setting where the demands and the guarantees can be very different for the many different
components. This has stimulated research on abstractions and models that could provide the basis for
the design and the analysis of network aware programs, where dynamically changing the logical and
physical architecture of systems plays a crucial role. The range of applications of reconfigurable, or
changeable, models proposed in this paper concerns the problem of global computing and
communications, which is especially important for MANET applications and Cloud Computing. We
will give some information on the used formalism. Logical and algebraic models describe a set of
properties of network programs. However, they do not give an idea of why these properties are
changing. Executable or operating models help us to monitor the behavior of the object. Thus, every
executable formal model is an abstract program for some virtual machines. Some formal models can
be executed immediately before the phase of the network programming. Such models we
conventionally call as “the directly executable”. Those models are classified as follows: the models of
intermediating type, possessing properties of the logic-algebraic and the executable models.

The concept of “directly executable” formal models is a metaphor, which is used in the sense of
Glushkov and his followers [10-17]. It means that the design of formal specifications is the last step
for the programmer before the writing of the network programs for MANET and Cloud Computing.

First, for a unified view of a number of important directly executable models let us consider
(dynamically changing, many-sorted) algebraic system:

AS = (A, P, F, IF0, IP0, Rules, M, Z),
where A = {A1, A2, …, An} – a finite set of some basic finite sets, or in another word “sorts” A1, A2, …,
An;

P – a finite set of predicate symbols;.
F – a finite set of function symbols;.
IF0 – initial interpretation of function symbols;
IP0 – initial interpretation of predicate symbols;
Rules – a finite set of modifications (or updates) to the interpretation of the predicate and

function symbols;
M – a finite set of abstract modules;

ScieTech 2016 IOP Publishing
Journal of Physics: Conference Series 710 (2016) 012024 doi:10.1088/1742-6596/710/1/012024

4

Z: M → P(Rules) – a mapping from the set M to the set of subsets of Rules, where P is a
Boolean symbol. Thus, as a result of the work of abstract modules of the set M dynamic algebraic
system AS evolves, passing from one interpretations of predicate and function symbols to another.

 We shall also use the known in algorithmic algebras operators-constants E (the identity
operator, or “empty” operator) and N (nowhere defined operator), as well as additional new operators
H (halt) and Ret (return to check conditions).

Reconfigurable dynamically changing, many-sorted algebraic system is defined as follows:
RAS = (A, P, F, IF0, IP0, Rules, M, Z, Rrules),

where Rrules – a set of “reconfigurable” rules that change the structure or the configuration of a given
formal model. The rules from the given set Rrules are actually very similar to the ones from the
original set Rules but relate to other properties of the model.

Algebraic systems identified in many studies. For example, algebraic systems reviewed in the
monograph [5]. Many-sorted algebraic systems are described in the monograph [6]. A similar concept
of evolving algebras, or, in modern interpretation, of abstract state machines (ASMs), was introduced
by the American mathematician Y. Gurevich, as well as the concept of updates of predicates and
functions [7]. It is well-known that ASMs can simulate “step-by-step” any type of machines (Turing
machines, RAMs, etc.). Various uses of ASMs are also described in the works [8, 9]. A systematic
study of ASMs is also done in [8]. One of the modifications of ASM has been described in [9]. The
authors modified Gurevich’s given notion of ASM to that of EMA which is the (Evolving Multi-
Algebra) simply by replacing the originally given program (which is a syntactic object) by a semantic
one: a function which has to be very simply definable over the static part of the ASM.

The main difference is that the reconfiguration of the structure of our model is carried out in
the course of its execution. Another major difference between the interpretation of the ASM and
interpretation of a tuple N as the network of abstract modules, or abstract machines (NAM) is
structuring by using the algebra of algorithms by Glushkov V. M. [10, 11] which is also applicable to
various problems of his colleagues and followers [12-17]. In particular, in this article we are using the
superposition of “alpha-disjunction”: [α](AB) – which is an analogue of the operator “if”, and the
“composition: AB or can be simply just A,B” operations for the structured description of the abstract
machines networks. Also an additional operation “←” is used for modificating the value of a variable,
function or a predicate. “Reconfigurable” version of NAM we will call abbreviated as RNAM.

3.1. Formal NAM and RNAM description of the reconfigurable (deterministic or non-deterministic)
Turing machines (RDTM and RNDTM)

The description of a Turing machine can be found, for example, in [18]. The work of the
deterministic or non-deterministic Turing machine (NDTM) can be described by the following
expression for the abstract module of NAM:

M = Place(Head) ← 0; State(q1) ← true;
[(Any q) State(q)]([a ← Tape(Place(Head))]
([Any(q, a, q, a, w)Program(q, a, q, a, w)]
({[State(q)&SQ0(q)](H  E), Tape(Place(Head)) ← a,
State(q) ← false, State(q) ← true, {[w = R]
(Place(Head) ← Inc(Place(Head))
[w = L](Place(Head) ← Dec(Place(Head)) E))}, Ret} N) N) N),

where q – the current state, q  Q, Q = {q1, q2, …, qn};
a – the symbol in the current cell of the tape, a  A, A = {a1, a2, …, am};
q1 – the initial state;
q– the next state, q  Q;
a– the next symbol in the current cell of the tape, a  A;
w  (R, L, S) – the variable, that is determining the movement’s direction of the head – right

(R), left (L), stand on the observed cell (S);

ScieTech 2016 IOP Publishing
Journal of Physics: Conference Series 710 (2016) 012024 doi:10.1088/1742-6596/710/1/012024

5

Any – the operator of non-deterministic selection of one of the tuples that are in the truth
domain of the predicate Program;

Program(q, a, q, a, w) – the predicate, the truth domain of which defines the work program
of a Turing machine, Program: (Q×A)×(Q×A×W)  {true, false};

Tape – the unary function, that defines a sequence of symbols on the tape,
Tape: Z  A, where Z – the set of integers;
Place – the unary function, that defines the head position,
Place: Hd  Z, where Hd – a set of head’s names (in this case Hd = {Head}, where Head is

the individual constant, or the name of the head);
State(q) – this predicate determines the state of the Turing machine (so that at any time the

statement (!q)State(q) is true, State: Q  {true, false});
Inc (Dec) – the increment (or decrement) function;
SQ0(q) – a characteristic function of a subset Q0 of final states.
A certain symbol of the external alphabet A = {a1, a2, …, am} is called a dummy symbol. This

symbol is represented by # or .
 According to the [18] at any instant of time the controlling device is in a certain state qi,

which belongs to an internal alphabet or a set Q = {q1, q2, …, qn}. Disjoint subsets Q1 and Q0 of initial
and final states respectively define the start and stop operations of a Turing machine. A Turing
machine stops when q  Q0 after the execution of some command. We also introduce SQ0(q) – a
characteristic function of a subset Q0 of final states.

The list of all quintuples or commands (q, a, q, a, w) in the truth domain of the predicate
Program which determines the operations of the Turing machine is a program of this machine.

In our example the quintuple (qi, aj, q, a, w) begins with the pair (qi, aj); i = 1, 2, …, n; j =
1, 2, …, m; n – the number of states; m – the number of symbols of the external alphabet A. For a
program of the deterministic Turing machine (DTM) there should be only one such the quintuple. In
the case of the non-deterministic Turing machine (NDTM) may be more than one tuple, starting with a
pair of the form (qi, aj). The values of qi and aj are defined as follows:

qj = (Any q) State(q); aj = Tape(Place(Head)).
The values of qi and aj determined in this way immediately during the execution of the expression M.

Reconfigurable (deterministic or non-deterministic) Turing machine (RDTM and RNDTM)
may further contain reconfigurable rules that change the structure or the configuration of a formal
model. For example, it is possible to change the program of work of the Turing machine with the
following rules from the set Rrules:

Program(qi, aj, q1, a1, L) ← false;
Program(qi, ai, q2, a2, R) ← true.
By incorporating these rules to the expression M we obtain the following expression RM for

the abstract module of RNAM:
RM = Place(Head) ← 0; State(q1) ← true;
[(Any q) State(q)]([a ← Tape(Place(Head))]
([Any(q, a, q, a, w)Program(q, a, q, a, w)]
({[State(q)&SQ0(q)](H  E), Tape(Place(Head)) ← a,
State(q) ← false, State(q) ← true, {[w = R]
(Place(Head) ← Inc(Place(Head))
[w = L](Place(Head) ← Dec(Place(Head)) E))},
{Program(qi, aj, q1, a1, L) ← false;
Program(qi, ai, q2, a2, R) ← true}, Ret} N)  N) N).

Replacing of the currently executed command may be performed as follows:
RM = Place(Head) ← 0; State(q1) ← true;
[(Any q) State(q)]([a ← Tape(Place(Head))]

ScieTech 2016 IOP Publishing
Journal of Physics: Conference Series 710 (2016) 012024 doi:10.1088/1742-6596/710/1/012024

6

([Any(q, a, q, a, w)Program(q, a, q, a, w)]
({[State(q)&SQ0(q)](H  E), Tape(Place(Head)) ← a,
State(q) ← false, State(q) ← true, {[w = R]
(Place(Head) ← Inc(Place(Head))
[w = L](Place(Head) ← Dec(Place(Head)) E))},
{Program(q, a, q, a, w) ← false;
Program(q, a, q2, a2, R) ← true}, Ret} N)  N) N).
Now it is easy to describe the multitape non-deterministic Turing machine described in the

books [21, 22]. The multitape non-deterministic Turing machine operates in accordance with the
following expression for the abstract machine module:

MK = Place(Head(1)) ← 0; Place(Head(2)) ← 0; …; Place(Head(k)) ← 0;
State(q1) ← true; [(Any q) State(q)]([a(1) ← Tape(1)(Place(Head(1)))]
([a(2) ← Tape(2)(Place(Head(2)))] …
… ([a(k) ← Tape(k)(Place(Head(k)))]
([Any(q, a(1), a(2), …, a(k), q, a(1), a(2), …, a(k), w(1), w(2), …, w(k))
Program(q, a(1), a(2), …, a(k), q, a(1), a(2), …, a(k), w(1), w(2), …, w(k))]
({[State(q)&SQ0(q)](H  E),
Tape(1)(Place(Head(1))) ← a(1),
Tape(2)(Place(Head(2))) ← a(2), …, Tape(k)(Place(Head(k))) ← a(k),
State(q) ← false, State(q) ← true,
{[w(1) = R](Place(Head(1)) ← Inc(Place(Head(1))) 
[w(1) = L](Place(Head(1)) ← Dec(Place(Head(1)))  E))},
{[w(2) = R](Place(Head(2)) ← Inc(Place(Head(2))) 
[w(2) = L](Place(Head(2)) ← Dec(Place(Head(2)))  E))}, …
…, {[w(k) = R](Place(Head(k)) ← Inc(Place(Head(k))) 
[w(k) = L](Place(Head(k)) ← Dec(Place(Head(k)))  E))}, Ret}  N)  N)…  N)
 N) N),

where superscripts correspond to the numbers of heads and tapes in multitape non-deterministic
Turing machine. Description of such a reconfigurable (deterministic or non-deterministic) Turing
machine is obvious.

3.2. Formal NAM and RNAM description of the reconfigurable (deterministic or non-deterministic)
finite state automata (RFSA and RNDFSA)

The present study is based on the works [19-22]. The work of the deterministic or non-
deterministic finite state automata (FSA or NDFSA) can be described by the following expression for
the abstract module of NAM:

1) for Mealy NDFSA automata:
A1 = Place(XHead) ← 0; Place(YHead) ← 0; State(a1) ← true;
[(Any a) State(a)]([x ← Xtape(Place(Xhead))]
([Any(a, x, a, y)Table(a, x, a, y)]
({[State(a)&SAF(a)](H  E), State(a) ← false, State(a) ← true,
Ytape(Place(Yhead)) ← y,
Place(Xhead) ← Inc(Place(Xhead)),
Place(Yhead) ← Inc(Place(Yhead)), Ret} N) N) N),

where a – the current state (a  A, A = {a1, a2, …, an} – a finite set of internal states, a1 – an initial
state);

x – the symbol in the current cell of the input tape (x  X, X = {x1, x2, …, xm} – a finite set of
input symbols;);

a– the next state a  A;

ScieTech 2016 IOP Publishing
Journal of Physics: Conference Series 710 (2016) 012024 doi:10.1088/1742-6596/710/1/012024

7

y – the output symbol (y  Y, Y = {y1, y2, …, yk} – a finite set of output symbols);
Any – the operator of non-deterministic selection of one of the tuples that are in the truth

domain of the predicate Table;
Table(a, x, a, y) – the predicate, the truth domain of which defines the work table of NDFSA

automata, Table: A×X×A×Y  {true, false};
Xtape – the unary function, that defines a sequence of input symbols on the input tape, Xtape:

Z  X, where Z – the set of integers;
Ytape – the unary function, that defines a sequence of output symbols on the output tape,

Ytape: Z  Y;
Place – the unary function, that defines the heads positions, Place: Hd  Z, where Hd – a set

of head’s names (in this case Hd = {XHead, YHead}, where XHead, YHead are the individual
constants, or the names of the input and output heads);

State(a) – this predicate determines the state of automata (so that at any time the statement
(!a)State(a) is true, State: A  {true, false});

Inc – the increment function;
AF – a subset of the final states, AF  A;
SAF(a) – a characteristic function of a subset AF of final states, SAF: A  {true, false};

2) for Moore NDFSA automata:
A2 = Place(XHead) ← 0; Place(YHead) ← 0; State(a1) ← true;
[(Any a) State(a)]([x ← Xtape(Place(Xhead))]
([Any(a, x, a, y)Table(a, x, a, y)]
({[State(a)&SAF(a)](H  E), State(a) ← false, State(a) ← true,
Place(Xhead) ← Inc(Place(Xhead)),
Place(Yhead) ← Inc(Place(Yhead)),
Ytape(Place(Yhead)) ← y, Ret} N) N) N);

the work of the deterministic or non-deterministic reconfigurable finite state automata (RFSA or
RNDFSA) can be described by the following expression for the abstract module of RNAM:

3) for Mealy RNDFSA automata:
A3 = Place(XHead) ← 0; Place(YHead) ← 0; State(a1) ← true;
[(Any a) State(a)]([x ← Xtape(Place(Xhead))]
([Any(a, x, a, y)Table(a, x, a, y)]
({[State(a)&SAF(a)](H  E), State(a) ← false, State(a) ← true,
Ytape(Place(Yhead)) ← y,
Place(Xhead) ← Inc(Place(Xhead)),
Place(Yhead) ← Inc(Place(Yhead)),
{Table(a, x, a, y) ← false,
Table(a, x, a1, y1) ← true}, Ret}N) N) N),
4) for Moore RNDFSA automata:
A4= Place(XHead) ← 0; Place(YHead) ← 0; State(a1) ← true;
[(Any a) State(a)]([x ← Xtape(Place(Xhead))]
([Any(a, x, a, y)Table(a, x, a, y)]
({[State(a)&SAF(a)](H  E), State(a) ← false, State(a) ← true,
Place(Xhead) ← Inc(Place(Xhead)),
Place(Yhead) ← Inc(Place(Yhead)),
Ytape(Place(Yhead)) ← y
{Table(a, x, a, y) ← false,
Table(a, x, a1, y1) ← true}, Ret}N) N) N).

ScieTech 2016 IOP Publishing
Journal of Physics: Conference Series 710 (2016) 012024 doi:10.1088/1742-6596/710/1/012024

8

3.3. Formal NAM and RNAM description of the reconfigurable information-inhibitor Petri net
(RPNII)

A Petri net [23-26] is one of several mathematical modeling languages for the description of
distributed systems. A Petri net is nothing but a directed bipartite graph, in which the nodes represent
transitions (i.e. events that may occur and signified by bars) and places (i.e. conditions that are
signified by circles). The directed arcs describe which places are pre- or postconditions for which
transitions (signified by arrows).

Petri net usually is defined by a tuple:
N = (P, T, F, H, M0),

where P = {p1, p2, …, pn}– a non-empty finite set of positions, T = {t1, t2, …, tm}– a non-empty finite
set of transitions, F, H – the incidence functions, M0 – a function of the initial marking of the
positions. We consider the first-order logical interpretation of 1-safe (or 1-bounded) Petri nets, for
which three predicates are determined:

F: P × T  {true, false}; H: T × P  {true, false}; M0: P  {true, false}.
We shall also use well known in the literature on Petri nets two optional binary predicates
FInh: P × T  {true, false} and FInf: P × T  {true, false} in order to set the inhibitory and

information arcs in a Petri net. Thus, information-inhibitor Petri net is defined as a dynamic algebraic
system by a tuple: NII = (P, T, F, FInh, FInf, H, M0, R), where R is a finite set of rules, that can update
the unary predicate M(p) (current marking). In the terms of Petri nets theory such rules are called the
rules of transitions firing. For this reason |R| = |T|.

The reconfigurable information-inhibitor Petri net now is defined as a reconfigurable dynamic
algebraic system by the next tuple: RNII = (P, T, F, FInh, FInf, H, M0, R, Rrules, SUpd), where Rrules is a
set of the “reconfigurable” rules that can update the binary predicates F, FInh, FInf, H; SUpd is a set of
the rules that can update the sets P and T, if it is needed.

Further consideration is expedient to carry out with an example. Let’s define a fragment of the
network NII as follows: F(p1, t1) = true, FInh(p2, t1) = true, FInf (p3, t1) = true, H(t1, p4) = true, M(p1) =
true, M(p2) = false, M(p3) = true, M(p4) = false. Rule r1 of firing the transition t1 is described by the
following expression for the network NAM: r1 = [M(p1)&M(p2)&M(p3)]({M(p1)  false, M(p4) 
true}  E). After firing the transition t1 marking becomes the following: M(p1) = false,
M(p2) = false, M(p3) = true, M(p4) = true.

For reconfiguration of the fragment we introduce two positions p5 and p6 and define
reconfiguration rules: Rrules = {F(p1, t1)  false, FInh(p2, t1)  false, FInf (p3, t1)  false,

 FInh(p3, t1)  true, F(p5, t1)  true, FInh(p6, t1)  true}.
The rule r firing the transition t1 is described now by the following expression for the network

RNAM:
r = [M(p1)&M(p2)&M(p3)]({M(p1)  false, M(p4)  true,
{F(p1, t1)  false, FInh(p2, t1)  false, FInf (p3, t1)  false,
FInh(p3, t1)  true, F(p5, t1)  true, FInh(p6, t1)  true }}  E).
The new rule r firing the transition t1 is described now by the following expression for the

modified network RNAM: r = [M(p3)& M(p5)& M(p6)]({M(p5)  false, M(p4)  true}  E).
Another principle of Petri nets modification was proposed in [27] and was associated only

with multiple arcs.

4. Conclusion
In this paper we proposed some “reconfigurable directly executable formal models” that are

suitable for the specification of computing and networking in the cloud environment and other
networks which are similar to wireless networks MANET. These models can be easily programmed
and implemented in computer networks. In this article, it was demonstrated that the directly executable
formal models can be classified as the models of intermediate type, possessing properties of logic-
algebraic and executable models.

ScieTech 2016 IOP Publishing
Journal of Physics: Conference Series 710 (2016) 012024 doi:10.1088/1742-6596/710/1/012024

9

The major difference between the interpretation of the ASM and the network of abstract
modules, or abstract machines (NAM) is the structuring by using the algebra of algorithms.
Reconfigurable version of NAM we have called abbreviated as RNAM. Reconfigurable, dynamically
changing, many-sorted algebraic system is the basis for the following models of discrete systems: the
formal “directly executable” NAM and RNAM; the formal “directly executable” NAM and RNAM
models for the reconfigurable (the deterministic and the non-deterministic) Turing machines (RDTM
and RNDTM); the formal “directly executable” NAM and RNAM models of the reconfigurable (the
deterministic and the non-deterministic) finite state automata (RFSA and RNDFSA); the formal
“directly executable” NAM and RNAM models of the reconfigurable information-inhibitor in Petri
nets (RPNII).

The modifications of some well-known formalisms will allow us in the future to construct
adequate models of systems with variable structures. Preliminary considerations of this issue as well as
the concept of the reconfigurable formal models were carried out in the article [28]. We propose to
focus further attention on the application of the proposed models in the field of cloud computing,
which is characterized by the following problem.

Moving traditional applications and their infrastructure to the cloud has shifted the in-house
control issue to a third party auditor. It posts many challenges including the security and the privacy
issues which come on top along with the performance and the availability out of the security which is
the number one concern. Clearly using the concept of cloud computing does not make the security
issues go away. It becomes an even challenging topic. So In that case, it is not a quite usual utility
concept that we are talking about in here. Still there is a problem concerning the security which is the
data leakages due to the poor authentications and information’s assurance. In this research study our
investigation presents a framework and an efficient construction for a significant integration of these
two components in our protocol design along with the present of the new approach to keep an efficient
and secure cloud computing framework. Juels et al. in [29] they have described the concept of the
“proof of retrievability” (POR) model, where the concepts of spot-checking and error-checking and
correcting codes are used to ensure both of the possession and the retrievability of data files on the
archive service systems. Specifically, some special kind of blocks called the “sentinels” which they are
randomly embedded into the data file F for the detection purposes, and F is further encrypted in order
to protect the positions of these special blocks mentioned.

However, like [30], mentioned that there are some kind of defects in the system like the number
of queries/ tasks a client can perform is also a fixed priori along with the introduction of pre-computed
“sentinels” which prevent the development of the dynamic data updates. In addition, the concept of the
public auditability is not supported in their proposed scheme. Shacham et al. in [31] designed an
improved the POR scheme with full proofs of security and deployed in the security model defined in
[29]. They are using some kind of publicly verified homomorphic authenticators [32], on which the
proofs of security can be aggregated into a small authenticator value, and the required public
retrievability is achieved. Still, the authors are only considering the static type of data files and not the
dynamic type and their dynamic operations and this issue is still of course affecting the security of the
scheme which is the main concern now of course along with the data availability and integrity.

 Our proposals for further research (part of the problem was formulated by one of the authors of
this paper in [4]) can be summarized as follows:

(1) We will propose a general formal proof of retrievability (POR) model with public
verifiability for the cloud’s data storage system, in which block less verifications are achieved and
encountered.

(2) We will also equip our proposed proof of retrievability (POR) construction with the
functions of supporting for the fully kinds of the dynamic data operations especially to support the
block insertion mechanism, which is missing in the most currently existing schemes. In addition to
this, multiple TPA’s (Third Party Auditors) in working mode in order to handle all the requests in
between the clients and the CSS (Cloud’s Storage System).

ScieTech 2016 IOP Publishing
Journal of Physics: Conference Series 710 (2016) 012024 doi:10.1088/1742-6596/710/1/012024

10

 (3) We will propose the new approach of checklist generation for each kind of the cloud like
public cloud, community cloud and private cloud with an appropriate procedure. This approach is
more affordable and efficient rather than using each time specific algorithms for providing the specific
required security.

The objectives of our future scope are:
1) To motivate the public auditing system of data storage security in Cloud Computing, and to

propose a protocol supporting for the fully kinds of the dynamic data operations, especially to support
the block insertion mechanism, which is missing in most of the currently existing schemes.

2) To extend the scheme to support the scalable and the efficient public auditing in Cloud
Computing using the IT auditing and the checklist generation for each kind of the cloud. In particular,
the scheme achieves the concept of the batch auditing where multiple delegated auditing tasks from
different users will be performed simultaneously and significantly fast by the TPAs.

3) To prove the security of our proposed construction and to justify the performance of the
proposed scheme through some significant and concrete kinds of implementations and comparisons
with the state-of-the-art.

Acknowledgments
The work is performed as part of the Federal Special Purpose Program - UIN: RFMEFI57414X0045).

References
[1] Mustafa Sadeq Jaafar, Sawant H. K. ACK Based Scheme for Performance Improvement of Ad-

hoc Network // International Journal of Advances in Engineering & Technology, (IJAET). Vol.
3, Issue 2, May 2012.

[2] Mustafa Sadeq Jaafar, Sawant H. K. Design and Development of ACK-Based Scheme Using
FSA for Ad-hoc Networks // International Journal of Modern Engineering Research, (IJMER).
Vol. 2, Issue. 2, Mar-Apr 2012, pp. 102-106.

[3] Mustafa Sadeq Jaafar. On Modification ACK-Based Scheme using FSA for Ad-Hoc Networks
// Proceedings of the Eleventh International Conference of Science and Technology “New
Information Technologies and Systems”, Penza, Penza State University, Russia, November 25–
27, 2014, pp. 334-340.

[4] Mustafa Sadeq Jaafar. IT Auditing Based on Public Verifiability and the Cloud’s Dynamics and
Data Storage Security using Multiple TPA’s // Proceedings of the XIX-th International
Conference “University Education”, Penza, Penza State University, Russia, April 9–10, 2015,
pp. 198-202.

[5] Malcev, A. I. Algebraic Systems. Springer-Verlag, 1973, 329 p.
[6] Plotkin, B. I. Universal algebra, algebraic logic, and databases. Dordrecht – Boston: Kluwer

Academic Publishers, 1994. 453 p.
[7] Gurevich, Y. Evolving Algebras 1993: Lipari Guide // Specification and Validation Methods. E.

Boerger (ed.), Oxford University Press, 1995, pp. 9-36.
[8] Boerger, E. Unifying View of Models of Computation and System Design Frameworks //

Annals of Pure and Applied Logic. Vol. 133, 2005, pp. 149-171.
[9] Grigorieff, S., Valarcher, P. Evolving Multialgebras Unify all Usual Sequential Models //

Symposium on Theoretical Aspects of Computer Science. Nancy, France, 2010, pp. 417-428.
[10] Glushkov, V. M. Theory of Automata and Formal Transformations of Microprograms //

Kibernetika, No. 5, 1975, pp.1-10.
[11] Gluschkow, W. M., Zeitlin, G. E., Justchenko, J. L. Algebra. Sprachen. Programmierung.

Akademie-Verlag, Berlin, 1980. – 340 p.
[12] Tseytlin, G. E. Glushkov Algebras and Clone Theory // Cybernetics and Systems Analysis.

Vol. 39, No. 4. Springer-Verlag, New York, 2003, pp. 509-516.
[13] Cejtlin, G., Jushchenko, E. Mathematical theory of multiprocessor control systems and its

applications // Computer Science Journal. Vol. 2, No. 3(6), 1994, pp. 247-261.

ScieTech 2016 IOP Publishing
Journal of Physics: Conference Series 710 (2016) 012024 doi:10.1088/1742-6596/710/1/012024

11

[14] Cejtlin, G.E. Schematics of Structural Parallel Programming and its Applications //
Mathematical Institute, Czechoclovak Academy of Olomous MFCS’79. Lecture Notes in
Computer Science. Vol. 74, 1979, pp. 474-481.

[15] Ivanov, P. M. Algebraic modelling of complex systems. – Moscow, 1996. – 274 p.
[16] Nepejvoda, N. N. Abstract algebras of different classes of programs // Proceedings of the 3rd

international conference on applicative computation systems (ACS’2012), 2012, pp. 103-128.
[17] Nepejvoda, N. N. Algebraic approach to control. Control Sciences, 2013, No. 6, pp. 2-14.
[18] Gavrilov, G. P., Sapozenko, A. A. Selected Problems in Discrete Mathematics. – M.: Mir

Publishers, 1989. – 414 p.
[19] Brauer, W. Automaten Theorie. B. G. Teubner Stuttgart, 1984. – 392 p.
[20] Cooke, D. J., Bez H. E. Computer Mathematics. Cambridge University Press, Cambridge,

1984. – 384 p.
[21] Aho, A. V., Hopcroft, J. E. Ullman, J. D. The Design and Analysis of Computer Algorithms.

Addison-Wesley Publishing Company, 1976. – 470 p.
[22] Aho, A. V., Ullman, J. D. The Theory of Parsing, Translation and Compiling. Vol. 1. Prentice-

Hall, Englewood Cliffs, 1973. – 309 p.
[23] Petri, C. A. Introduction of General Net Theory // Lecture Notes in Computer Science. Berlin:

Springer-Verlag. Vol. 84, 1980, pp. 1-26.
[24] Peterson, J. L. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood Cliffs,

NJ, 1981. – 264 p.
[25] Petri Nets. Fundamental Models, Verification and Applications / Ed. by M. Diaz. John Wiley

and Sons, 2009. – 613 p.
[26] Petri Nets. Theory and Applications / Ed. by V. Kordic. I-TECH Education and Publishing,

Vienna, Austria, 2008. – 544 p.
[27] Valk, R. Self-modifying Nets, a Natural Extension of Petri Nets // Lecture Notes in Computer

Science. Berlin: Springer-Verlag. Vol. 62, 1978, pp. 464-476.
[28] Mustafa Sadeq Jafar, Zinkin, S. A. Reconfigurable formal models for MANET and Cloud

networking and computing // Proceedings of the XII-th International Conference of Science and
Technology “New Information Technologies and Systems”. Penza State University, Russia,
2015, pp. 141-149.

[29] Juels, A., Kaliski, B. S., Jr., “Pors: proofs of retrievability for large files,” in Proc. of CCS’07.
New York, NY, USA: ACM, 2007, pp. 584–597.

[30] Bowers, K. D., Juels, A., Oprea, A. Proofs of retrievability: Theory and implementation //
Cryptology ePrint Archive, Report 2008/175, 2008.

[31] Shacham, H., Waters, B. Compact proofs of retrievability // In Proc. of ASIACRYPT’08.
Springer-Verlag, 2008, pp. 90–107.

[32] Boneh, D., Lynn, B., Shacham, H. Short signatures from the weil pairing // In Proc. of
ASIACRYPT’01. London, UK: Springer-Verlag, 2001, pp. 514–532.

ScieTech 2016 IOP Publishing
Journal of Physics: Conference Series 710 (2016) 012024 doi:10.1088/1742-6596/710/1/012024

12

