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Abstract.

Gene Ontology (GO) is a hierarchical vocabulary for gene product annotation. Its synergy
with machine learning classification methods has been widely used for the prediction of protein
functions. Current classification methods rely on heuristic solutions to check the consistency
with some aspects of the underlying GO structure. In this work we formalize the GO is-a
relationship through predicate logic. Moreover, an ontology model based on Forney Factor
Graph (FFG) is shown on a general fragment of Cellular Component GO.

1. Introduction

The high-throughput sequencing technologies entail new challenges in data processing. As a
result, the use of machine learning algorithms has become relevant in many bioinformatics
applications [1, 2]. In particular, for Automated Functional protein Prediction (AFP) based
on Gene Ontology (GO), ensemble methods consider the ontological structure (DAG, directed
acyclic graph) through a hierarchical classification [3, 4]. The design of ensemble methods is
made in two steps: i) In the first one, a set of binary classifiers is built to predict GO-terms
(classes), ii) In the second one, consistency of GO-DAG relationship is done. Focusing on this
last step, different solutions based on heuristics [5, 6] have been proposed such as the True Path
Rule (TPR) algorithm [5] where the is-a DAG relationship is fulfilled implementing the rule:
“If the child term describes the gene product, then all its parent terms must also apply to that

gene product”.

Heuristic solutions may be a good accuracy-effort trade-off, but a step beyond to attempt
logical formalization for checking the DAG restrictions. In this paper we propose that
formalization through Forney Factor Graph (FFG) model [7], since it allows a TPR restriction
representation by the logical factorization of functions of several variables associated with GO-
terms. The achieved model, called FFG-GO, is able to infer functional predictions of genes by
using the sum-product algorithm [8].

In the next Section a brief background of FFG is presented. Then, in Section 3 TPR
restrictions are formalized thought predicate logic, in Section 4 FFG-GO model is described. In
the last Section, a subgraph of Cellular Component GO is modeled by FFG-GO.
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2. Background

An FFG is a model that represents the factorization of a function for several variables. Briefly,
the FFG diagram (Fig. 1) has nodes, ordinary edges, and leaf-edges interpreted as follows: each
factor fi (also called function) is represented by a node; each state variable Sj is between two
factors and is represented by an ordinary-edge; and each input variable Ak must be involved in
just one factor and represented by a leaf-edge. The global function (f) is factorized into factors
as a product of local functions, where each factor depends on a subset of variables of f . For
instance, the function f(A1, A2, A3, A4, S1, S2, S3) can be factorized as:

f(A1, A2, A3, A4, S1, S2, S3) = f1(A1, S1)f2(A2, S1, S2, S3)f3(A3, S2)f4(A4, S3) (1)
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Figure 1: FFG diagram. Boxes are factors, fi theirs functions; ordinary-edges, Sj theirs state
variables; and leaf-edges, Ak theirs input variables.

3. Formalizing GO and TPR restrictions

Aiming to include the GO constraint into FFG model, the TPR restriction is formulated by
predicate logic. Next, GO-DAG is denoted by G = (V,≤), where V is a set of GO terms and ≤

is a binary relation on V . GO terms are represented by GO nodes (GO1, · · · , GOm) where m
is the cardinality of V . GOl ≤ GOz denotes that GOz is a parent of GOl, written in predicate
logic as is a(GOl, GOz).

The Gene Ontology Consortium has defined the TPR restriction to guarantee the is a GO-
DAG consistency as follows: “An annotation for a class in the hierarchy is automatically
transferred to its ancestors, while unannotated genes for a class cannot be annotated for its
descendants”. Note that classes are GO terms and annotation is the process of assigning GO
terms to gene products.

Based on [9], we rewrite the TPR by two rules of predicate logic: one related to the parents
(Eq.2) and the other related to offspring (Eq.3).

r1 : ∀GOk

(

is a(GOl, GOk) ∧ pos(GOl) → pos(GOk)
)

(2)

r2 : ∀GOk

(

is a(GOk, GOz) ∧ ¬pos(GOz) → ¬pos(GOk)
)

(3)

where pos(GOk) means a gene annotation with the GOk term.

4. FFG-GO model

Regarding the GO behavior modeling under FFG, some GO issues are briefly recalled. The gene
ontology is composed of nodes representing gene functions, i.e., the k-th node and its function
are jointly called GO:k. The GO nodes are connected in a DAG structure through edges that
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characterize node relationships. Without losing generality, in this work we focus on is-a relation.
In Fig. 2(a) a comprehensive GO example that considers multiple offspring-parents is illustrated,
while Fig. 2(b) shows its FFG-GO counterpart. GO nodes are matched to FFG model by input
variables for root and leaves nodes, and by input state variables for inner nodes. For instance,
the leaf GO:5 matches to A5, and the inner node GO:2 matches to A2, S1, and S2. The DAG
relationships together with GO restrictions are represented by FFG functions that depend on
state and input variables. For instance, r12 and r13 relation match to the function f1.
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Figure 2: (a). The GO-DAG example. (b). The FFG-GO counterpart. GO:k node is translated
to Ak/Sj variables, GO relationship r are fi(Sj , Ak).

The strength of FFG model is the design of functions fi through logical expressions [10]
to describe both the native FFG constraints and the GO-DAG restrictions. In the FFG-GO
approach we identify three kinds of factors: equality, multiple offspring, and multiple inheritance.
Note that the equality is a native FFG factor, but the inclusion of the multiple offspring together
with multiple inheritances allows the formal implementation of TPR.

Equality constraint: Also called identity function and symbolized with f= forces all its vari-
ables to be equals. It is required in the FFG building [7, 11]. Fig. 3 shows the identify
function block, Table 1 describes its truth table, where as expected f= = 1 when all its
variables (A2, S1, S2) are equals.

Table 1: Truth table for equality constraint.
Inputs: A2, S1 and S2; Output: f=
.

A2 S1 S2 f=(A2, S1, S2)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

1 SS

A2

f 2
=

Figure 3: Identity
function in graphic
FFG-GO model

The f= Boolean expression is f=(A2, S1, S2) = A2 · S1 · S2 +A2 · S1 · S2
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The general form for equality constraint is:

f=(Ak, S1, . . . , Sn) =

{

1 pos(Ak) ∧ pos(S1) ∧ . . . ∧ pos(Sj) ∨ ¬pos(Ak) ∧ ¬pos(S1) ∧ . . . ∧ ¬pos(Sj) j = 1, . . . , n

0 otherwise
(4)

Multiple offspring: Symbolized with f∧, it describes the allowed node states depending on its
multiple children states. See Fig. 4 where GO:1 matches to A1, GO:2 to A2 and S1, and
GO:3 to A3 and S3; Table 2 describes its truth table according to the predicate logic of
Eq. 3.

Table 2: Truth table for multiple
offspring. Inputs: A2, S1 and S3;
Output: f∧
.

A1 S1 S3 f∧(A1, S1, S3)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

1 S3S

A A2 3

GO:3GO:2

GO:1

= =

A1

fff

Figure 4: Multiple offspring in FFG-GO
graphic model.

The f∧ Boolean expression is f∧(A1, S1, S3) = A1 +A1 · S1 · S3

The general form for multiple offspring constraint is:

f∧(Ak, S1, . . . , Sn) =

{

1 pos(Ak) ∨ ¬pos(Ak) ∧ ¬pos(S1) ∧ . . . ∧ ¬pos(Sj) j = 1, . . . , n
0 otherwise

(5)
The Ak is the FFG input variable that represents the parent GO node, and S1 to Sn are
variables that represent its children.

Multiple inheritance: Symbolized with f∨, it describes the allowed node states depending on
its multiple parent states. See Fig. 5 where GO:4 matches to A4 and S6, GO:2 to A2 and
S2, and GO:3 to A3 and S4; Table 3 describes its truth table according to the predicate
logic of Eq. 2.
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Table 3: Truth table for multiple
inheritance. Inputs: S6, S2 and S4;
Output: f∨
.

S6 S2 S4 f∨(S6, S2, S4)
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

GO:2

GO:4 2 S4S

A A2 3

A

S

4

6

f=

GO:3

ff

f=

=

Figure 5: Multiple inheritance in FFG-GO
graphic model.

The f∨ Boolean expression is f∨(S6, S2, S4) = S6 + S6 · S2 · S4

The general form for multiple inheritance constraint is as follow:

f∨(Ak, S1, . . . , Sn) =

{

1 ¬pos(Ak) ∨ pos(Ak) ∧ pos(S1) ∧ . . . ∧ pos(Sj) j = 1, . . . , n
0 otherwise

(6)
The S1 to Sn are the variables that represents the parent GO nodes, and Ak is the input
variable that represent its son.

Summarizing the GO to FFG-GO matching of the multiple offspring-inheritance example,
Fig. 2, is shown in Fig. 6.
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Figure 6: FFG-GO graphic model of
multiple-offspring/inheritance, Fig. 2.

f∧ = A1 +A1 · S1 · S2

f∨1
= S6 + S2 · S4 · S6

f∨2
= A5 +A5 · S5 · S7

5. Results and discussion

In order to show the strength of the proposed FFG-GO, a model on a rich fragment of GO
Cellular Component (CC) is done. This CC subgraph has all the TPR restrictions discussed
above, see Fig. 7. For simplicity we have renamed GO nodes, GO:1 is the CC root GO:0005575,
and GO:2,. . . , GO:13 are GO:0032991, GO:0043226, GO:0043228, GO:0005623, GO:0032993,
GO:0043229, GO:0044464, GO:0043232, GO:0032993, GO:0044426, GO:0044422, GO:0044427,
GO:0030894 respectively.

Fig. 8 shows FFG-GO model associated with CC fragment in Fig. 7. The f shows that the
GO CC and FFG-GO matching, i.e., GO-terms match directly to Ak input variable. In one
hand, the CC root GO:1 matches to A1 input variable, and has always associated with the
multiple offspring function f∧. On the other hand, leaves (GO:9,GO:13 ) match to A9, A13 input
variables, and have always associated with the multiple inheritance function f∨. We should note
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Figure 7: Cellular Component subgraph

that TPR restrictions are associated just with FFG-GO functions, hence, a restriction change
requires a function modification but not a FFG-GO model rebuilding as happens with other
approaches.
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Figure 8: Cellular Component ontology in FFG-GO

The proposed FFG-GO model allows the formalization of is-a DAG relationship of GO
ontology. Without loss of generality, the inclusion of new DAG relationships or restrictions
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requires just a redesign of functions f without changing the core of FFG-GO model. Likewise,
the insertion of new GO-terms is simple and easy to interpret graphically. In order to complete
the GO-term annotation prediction for each sample (protein), a dynamic inference process must
takes place on the FFG-GO model. This inference process is carried out by the sum-product
algorithm, but its description is out of the scope of this work, see [8] for details.

6. Conclusion

In ensemble classification methods, GO-term predictions computed by base binary classifiers are
leveraged by checking the consistency of predefined GO relationships. Both formal leveraging
strategies, with main focus on annotation precision, and heuristic alternatives, with main focus
on scalability issues, have been described in literature.
Focusing on formal strategies, the formalization of TPR restrictions by predicate logic. The
further work is to embody this formalization in a hierarchical classification method based on
graphical models.
Along this paper we have focused our attention on is a relationship of GO. However, this
approach may be extended to another types of transitive relationships, such as part of, has part.
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