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Abstract. I clarify the differences between various approaches in the literature which attempt
to link gravity and thermodynamics. I then describe a new perspective1 based on the following
features: (1) As in the case of any other matter field, the gravitational field equations should also
remain unchanged if a constant is added to the Lagrangian; in other words, the field equations
of gravity should remain invariant under the transformation T a

b → T a
b + δab (constant). (2)

Each event of spacetime has a certain number (f) of microscopic degrees of freedom (‘atoms of
spacetime’). This quantity f is proportional to the area measure of an equi-geodesic surface,
centered at that event, when the geodesic distance tends to zero. The spacetime should have a
zero-point length in order for f to remain finite. (3) The dynamics is determined by extremizing
the heat density at all events of the spacetime. The heat density is the sum of a part contributed
by matter and a part contributed by the atoms of spacetime, with the latter being L−4

P f . The
implications of this approach are discussed.

1. Linking Gravity with Thermodynamics: Comparison of different approaches
The idea that gravitational field equations could be interpreted using (or derived from)
thermodynamic arguments has been explored by many people from widely different perspectives.
(See e.g., [1–18]). There is a tendency in the literature to club together these – very different
– attempts as essentially the same or, at least, as being very similar. Such a point of view is
technically incorrect and, given this tendency, it is useful to clarify the differences between the
various approaches, as regards their assumptions, physical motivation and the generality of the
results. I will begin with a series of comments aimed at this task:2

(1) To begin with, one must sharply distinguish between (i) the attempts concerned with the
derivation of the field equations by thermodynamic arguments (like e.g., [4, 7–12, 14, 15])
and (ii) the attempts related to the interpretation of the field equations in thermodynamic
language (like e.g., [1–3, 5, 6, 13, 16–21]). The latter is as important as the former because
the existence of a purely thermodynamic interpretation for the field equations is vital for
the overall consistency of the programme. It is rather self-defeating to derive the field
equations Ga

b = 8πT a
b from thermodynamic arguments and then interpret them in the usual

1 I thank the organizers for the excellent hospitality during the EmQM15 meeting, and the participants for
several useful discussions. In this written version, I elaborate on several conceptual and technical aspects behind
the results I presented in my keynote address, which I could only briefly touch upon in my talk. I also address
various questions raised by the participants during the discussions.
2 There are also numerous other attempts which derive/interpret the linearized field equations – rather than the
exact equations – from thermodynamic considerations. In what follows, I am only concerned with attempts which
derive/interpret the exact field equations.
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geometrical language! If gravity is thermodynamic in nature, then the gravitational field
equations must be expressible in a thermodynamic language. This crucial feature has not
been given due recognition in the literature. Unless the final result has an interpretation
in thermodynamic language, such a derivation of the field equations is conceptually rather
incongruous.
As an example of what I mean by such an interpretation, let me recall the following result.
It can be shown that [12] the evolution of geometry can be interpreted in thermodynamic
terms, as heating and cooling of null surfaces, through the equation:∫

V

d3x

8πL2
P

√
huag

ij£ξp
a
ij = ϵ

1

2
kBTavg(Nsur −Nbulk) (1)

where

Nsur ≡
∫
∂V

√
σ d2x

L2
P

; Nbulk ≡ |E|
(1/2)kBTavg

(2)

are the degrees of freedom in the surface and bulk of a 3-dimensional region V and Tavg is the
average Davies-Unruh temperature [22,23] of the boundary. The hab is the induced metric
on the t = constant surface, pabc ≡ −Γa

bc +
1
2(Γ

d
bdδ

a
c + Γd

cdδ
a
b ), and ξa = Nua is the proper-

time evolution vector corresponding to observers moving with four-velocity ua = −N∇at.
The factor ϵ = ±1 ensures the correct result for either sign of the Komar energy E. The
time evolution of the metric in a region (described by the left hand side), which can be
interpreted [16] as heating/cooling of the spacetime, arises because Nsur ̸= Nbulk. In any
static spacetime [20], on the other hand, £ξ(...) = 0, leading to “holographic equipartition”:
Nsur = Nbulk. This result translates gravitational dynamics into thermal evolution of the
spacetime. The validity of Eq. (1) for all observers (i.e., foliations) ensures the validity of
Einstein’s equations.
In fact, no thermodynamic derivation of field equations in the literature actually obtains the
tensorial form of field equation Ga

b = 8πT a
b . What is always done is to obtain an equation

of the form Ga
bvav

b = 8πT a
b vav

b (where va is either a timelike or null vector) and postulate
its validity for all va. So it is important to understand the physical meaning of such an
equation, especially the left hand side, for a given class of va. This will be a recurrent theme
which I will elaborate on later sections.

(2) Many thermodynamic derivations of field equations available in the literature, work with the
assumption that the entropy of a horizon is proportional to its area (e.g., [4, 10, 11, 14, 15])
and attempt to introduce thermodynamic arguments centered around it. It is likely
that such derivations miss some essential physics. The connection between gravity and
thermodynamics, motivated historically from the laws of black hole mechanics and the
membrane paradigm [1–3], transcends Einstein’s theory. In a more general class of theories,
the (Wald) entropy of the horizon is not proportional to its area. One should therefore
distinguish approaches in this subject which are specially tuned to Einstein gravity (and uses
the entropy-area proportionality) from a broader class of approaches (like e.g. [7, 8, 17,21])
because the latter ones, being more general, probably captures the underlying physics better.
The above criticism is also valid for approaches based on entanglement entropy when it is
assumed to be proportional to the horizon area.

(3) Another feature which distinguishes different approaches in the literature is whether the
field equations are derived from a variational principle or from some other procedure. I am
personally in favour of approaches which use a variational principle because they could offer
a better window into microscopic physics. What is more, the approaches which does not use
a variational principle are very limited in their scope. For example, it is virtually impossible
to generalize such models beyond Einstein’s theory. (In contrast, the very first approach
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which used a thermodynamic variational principle to derive the field equations [7], obtained
the field equations for all Lanczos-Lovelock models at one go.) Some of these approaches
like, for example, those which use the Raychaudhuri equation also have non-trivial technical
issues [24,25].
Even amongst the approaches which use variational principles, we need to distinguish
between (i) those which vary the geometry (viz., the metric in some form, sometimes in a
rather disguised manner) and (ii) those which vary some auxiliary vector field, keeping the
metric fixed. Many approaches involving holographic concepts and entanglement entropy
do vary the geometry in some form and I prefer approaches which vary an auxiliary
vector to these approaches. (After all, if you are going to vary the metric/geometry in
an extremum principle, why not just use the Einstein-Hilbert action and be done with it ?!)
An example [26] of an extremum principle which does not vary the metric, is given by the
functional

Qtot =

∫
√
γ d2x dλ

(
T a
b ℓaℓ

b +
[
2ησabσ

ab + ζθ2
])

(3)

Here, σab and θ are the shear and expansion of a null congruence ℓa(x), η = 1/16πL2
P , ζ =

−1/16πL2
P are the shear and bulk viscous coefficients of a null fluid [1–3] and the integrand

can be interpreted as the rate of generation of heat (‘dissipation without dissipation’;
see [27, 28]) due to matter and gravity. Varying Qtot with respect to ℓa and demanding
that the extremum should hold for all ℓa (i.e., for all null surfaces) will lead to Einstein’s
equations. (We will say more about this in Sec. 5.2.) Such a variational principle – and
others of similar genre which we will discuss later – treats the geometry as fixed and does
not vary the metric.

(4) At a more fundamental level, the horizon entropy cannot be finite unless some kind
of discreteness exists in the spacetime near Planck scales. This is clear in the case of
entanglement entropy, which is a manifestly divergent quantity (see e.g., [29,30]) and needs
to be regularized by some ad-hoc cut-off; but it is implicit in all approaches. So, unless
we have a model which captures at least some of the quantum gravitational effects on
the spacetime, any derivation of field equations using a finite value for entropy is, at best,
incomplete.

(5) Finally, let me emphasize that gravity cannot be an entropic force. This was ably
demonstrated by Matt Visser [31] by an argument which uses (essentially) elementary
vector analysis. It is trivial to prove, in the Newtonian limit, that a conservative force
f = −∇ϕ cannot, in general, be expressed in the entropic form f = T∇S if T is the Davies–
Unruh temperature that depends on the magnitude of the acceleration |∇ϕ|. The relation
−∇ϕ = T∇S implies that the level surfaces of ϕ coincide with those of S allowing us to
introduce a function S = S(ϕ). This, in turn, implies T (dS/dϕ) = −1 and hence the level
surface of ϕ coincide with the level surfaces of T . But since T depends only on |∇ϕ|, this
requires the level surfaces of |∇ϕ| to coincide with those of ϕ. This condition is, in general,
impossible to satisfy and can happen only in situations of high symmetry (for example,
spherical, cylindrical, planar etc.). It would be preferable if the phrase “entropic gravity”
is not used as a rather generic term to describe the different approaches in this subject, for
the simple reason that gravity cannot be an entropic force.

To summarize, there exist many different attempts in the literature to link gravity and
thermodynamics. All of these are not equivalent – either conceptually or technically – and
it is also likely that at least some of them are fundamentally flawed or incomplete.

The approach I have been pursuing – which I will describe here – is marked by the following
features: (1) Much of it works for a wide class of theories, more general than Einstein’s gravity.
In particular, the results hold for theories in which entropy is not proportional to horizon area.
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(2) The field equations are derived from a thermodynamic extremum principle in which the
geometry is not varied but some other auxiliary vector field is varied. (3) The resulting field
equations are interpreted in a thermodynamic language and not in a geometric language. (4)
The introduction of a zero-point length to the spacetime by quantum gravitational effects allows
us to provide a microscopic basis for the variational principle which is used.

Here, I will concentrate on developing this perspective from first principles in a streamlined
manner. Obviously this will require us to make some educated guesses but I shall argue that
these guesses are well-motivated and the results are quite rewarding. In particular, I will describe
the following two aspects:

• I will demonstrate [32] a deep connection between two aspects of gravity which are usually
considered in the literature to be quite distinct. The first is the fact that gravity seems
to be immune to the shift in the zero level of the energy, i.e, to the shift in the value of
cosmological constant. Second is the feature I mentioned above, viz., gravitational dynamics
can be reinterpreted in a purely thermodynamic language. I will show how the first feature
leads to the second and, in fact, provides a simple and natural motivation to consider the
heat density of the null surfaces as a key physical entity.

• Much of the previous work treated the spacetime as analogous to a fluid and investigated
its properties in the thermodynamic limit. The next, deeper, level of description of a fluid
will be the kinetic theory which recognizes the discreteness and quantifies it in terms of a
distribution function for its molecules. I will describe an attempt [32] to do the same for
the spacetime by introducing a distribution function for the atoms of spacetime (which will
count the microscopic degrees of freedom) and relating it to the extremum principle which,
in turn, will lead to the field equations.

2. Is spacetime metric a dynamical variable?
The principle of equivalence, along with principle of general covariance, strongly suggest that
gravity is the manifestation of a curved spacetime3. described by a non-trivial metric gab(x). The
kinematics of gravity, viz. how a given gravitational field affects matter, can then be determined
by postulating the validity of special relativistic dynamics in all freely falling frames. This will
lead to the condition ∇aT

a
b = 0 for the energy momentum tensor of matter, which encodes the

influence of gravity on matter.
Unfortunately, we do not have any equally elegant guiding principle to determine the

dynamics of gravity, viz. how matter determines the evolution of the spacetime metric. The
dynamics is contained in the gravitational field equation which – in Einstein’s theory – is assumed
to be given by Ga

b = 8πT a
b . (In a more general class of theories, like e.g, Lanczos-Lovelock

models, the left hand side will be replaced by a more complicated second rank, symmetric,
divergence-free tensor.) One can obtain this equation, as Einstein did, by (i) assuming that the
right hand side must be T a

b and (ii) by constructing a second rank, symmetric, divergence-free
tensor from the metric containing upto second derivatives. Alternatively, as Hilbert did, one
can write down a suitable scalar Lagrangian and vary it with respect to the metric and obtain
the field equations.

In either procedure, one tacitly assumes that the spacetime metric is a dynamical variable
with a status similar to, say, that of the gauge potential Aj in electromagnetism. This belief is
based on the fact that Einstein’s equation is a second order differential equation for the metric
just as Maxwell’s equation is a second order differential equation for Aj . It is in the same
spirit that we justify varying the metric in the Hilbert action (as analogous to varying Aj in
the electromagnetic action) to obtain the Einstein’s equation. Further, once we have a classical

3 I use the signature (−+++) and will set ~ = 1, c = 1 so that G = L2
P . Occasionally, I will also set G = 1 when

no confusion is likely to arise.
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action AH [gab] in which gab is varied to get the field equations, it is tempting to think of a
quantum theory, defined through a path integral over exp iAH [gab] (or in some other equivalent
manner) with the metric playing the role of a quantum variable.

But, given the fact that spacetime geometry is conceptually very different from an external
field propagating in it, this assumption – viz., that metric is a dynamical variable similar to
other fields – is indeed nontrivial. Further, if varying the metric in the Hilbert action is not
the appropriate way to obtain the classical theory, then one is forced to think afresh about all
the quantum gravity programmes. Interestingly enough, this textbook procedure – of treating
metric as a dynamical variable, accepted without a second thought – is by no means a unique
way to obtain Einstein’s equation. In fact, it is probably not the most natural or efficient
procedure. One can come up with alternative approaches and physically motivated extremum
principles, leading to Einstein’s equation, in which the metric is not a dynamical variable. Let
me describe one such approach.

The field equations we seek should be a relativistic generalization of Newton’s law of gravity
∇2ϕ ∝ ρ. A natural way of generalizing this law is to begin by noticing that: (i) The energy
density in the right hand side ρ = Tabu

aub is foliation/observer dependent where ui is the four
velocity of an observer. There is no way we can keep ui out of it. (ii) We know from the principle
of equivalence that gab plays the role of ϕ/c2. So a covariant, scalar generalization of the left
hand side, ∇2ϕ, could come from the curvature tensor – which contains the second derivatives
of the metric. Any such generalization must depend on the four-velocity ui of the observer since
the right hand side does. (iii) It is perfectly acceptable for the left hand side not to have second
time derivatives of the metric, in the rest frame of the observer, since they do not occur in ∇2ϕ.

To obtain a scalar analogous to ∇2ϕ, having spatial second derivatives, we first project the
indices of Rabcd to the space orthogonal to ui, using the projection tensor P i

j = δij + uiuj ,

thereby obtaining the tensor Rijkl ≡ P a
i P

b
j P

c
kP

d
l Rabcd. The only scalar we can get from Rijkl

is R−2 ≡ Rij
ij where R can be thought of as the radius of curvature of the space.4 The natural

generalization of Newton’s law ∇2ϕ ∝ ρ is then given by R−2 ∝ ρ = Tabu
aub. Working out

the left hand side (see e.g., p. 259 of [33]) and fixing the proportionality constant from the
Newtonian limit, one finds that

Gabu
aub = 8πTabu

aub. (4)

If this scalar equation should hold for all observers (general covariance) then we needGab = 8πTab

which is the standard result. Demanding that R−2 = 8πρ holds for each observer, captures the
geometric statement – viz. that energy density curves space as viewed by any observer – in a
nice manner and is indeed the most natural generalization of Newton’s law: ∇2ϕ ∝ ρ.

So, in this approach, the fundamental equation determining the geometry is Eq. (4) – which
should hold for all normalized, timelike vectors ui at each event of spacetime – rather than
the standard equation Gab = 8πTab. While the two formulations are algebraically equivalent,
they are conceptually rather different. In the conventional approach to derive Gab = 8πTab, we
do not invoke any special class of observers. Instead, we assume that the right hand side of
the field equation must be T a

b and look for a generally covariant, divergence-free, second-rank
tensor built from geometry to put on the left hand side. (Alternatively, we look for a scalar
Lagrangian made from geometrical variables). But the source in Newtonian gravity is actually
Tabu

aub which does involve an extra four-velocity for its definition. If we introduce observers
with four-velocity ui – and in the end demand that the equation should hold for all ui – we
obtain the same gravitational field equations by a different route. This approach to dynamics
brings it closer to the way we handled the kinematics by introducing the freely falling observers.

4 This Rijkl and R should not to be confused with the curvature tensor 3Rijkl and the curvature scalar 3R of
the 3-space orthogonal to ui.
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The real importance of this approach stems from the fact that it allows us to construct
different kind of extremum principles which will lead to the gravitational field equations, without
treating the metric as a dynamical variable! Since this approach introduces an extra vector field
uj into the fray, one can consider an extremum principle in which we vary ui – which makes
physical sense in terms of changing the observer – instead of the metric. It is now possible, for
example, to obtain the field equations by varying ui in a variational principle with the Lagrangian
L1 ∝ (Ga

b − 8πT a
b )uau

b and demanding that the extremum must hold for all ui. In fact, we can
also use the Lagrangian L2 ∝ (Ra

b−8πT a
b )uau

b. Varying uj in the resulting action, after imposing
the constraint u2 = −1 and demanding that the extremum should hold for all ui, will lead to
the equation Ra

b − 8πT a
b = λ(x)δab where λ(x) is the Lagrange multiplier. Using Bianchi identity

and ∇aT
a
b = 0, we will recover the field equations except for an undetermined cosmological

constant [34]. Removing a total divergence from Ra
buau

b we see that this is equivalent to a
variational principle based on the functional5

A[ui] =

∫
d4x

√
−g

[
(∇iu

i)2 −∇ju
i∇iu

j − 8πρ
]

(5)

Varying ui in A[ui] and demanding the extremum to hold for all ui will lead to Eq. (4) except for
an undetermined cosmological constant.6 So, one can indeed obtain the classical field equations
for gravity without varying the metric in any action principle.

The existence of such alternative variational principles takes away the motivation to treat
the metric as a dynamical variable either classically or quantum mechanically. If this alternative
procedure – or a variant of it – is the correct interpretation of classical gravity, then Hilbert
action has no meaning classically (and hence in a quantum mechanical path integral). In the
classical theory, what ultimately matters is the field equation and the rest is just window dressing.
But the distinction between these two approaches is vital when we want to bring together the
principles of quantum theory and gravity. If metric is not a dynamical variable in the classical
theory – and the correct classical variational principle involves varying some other auxiliary
variable like ui rather than the metric – it makes no sense to quantise the metric. Such an
attempt will, at best, be similar to quantizing the velocity or density field of a material medium.
While gravitons will emerge with the same conceptual status as, say, phonons the attempt will
not lead to a complete quantum description of the spacetime. So, the alternative paradigm
suggests a completely different picture about the quantum nature of spacetime.

This point of view, that the metric is not a dynamical variable, receives independent support
from the tantalizing relationship between gravitational dynamics and thermodynamics of null
surfaces. As I mentioned earlier, one can provide a purely thermodynamic interpretation to
Eq. (4) quite easily but not to Ga

b = 8πT a
b . We need the extra vector field uj for this

interpretation, just as we need it to define an energy density. We will see later that the situation
is still better when we use a null vector in place of the timelike vector.

3. A guiding principle for dynamics and its consequences
One major problem with the conventional approach to gravitational dynamics is that we lack a
good guiding principle to determine the field equations. My first task is to take care of this. I

5 This expression is very similar to the structure seen in ADM Hamiltonian (missing only a 3R term) but, of
course, here we are varying the vector field ui and not the metric gij . In fact, one can add any functional of the
metric to the Lagrangian and it would make no difference since the metric is not varied.
6 Usually, if you vary a quantity qA in an extremum principle, you get an evolution equation for qA. Here we
vary ui in Eq. (5) but get the equation constraining gab! This comes about because, after varying ui, we demand
the equation to hold for all ui to take care of all observers. (Recall that this is also done in all attempts to derive
field equations by thermodynamic arguments.) While conceptually different from the usual extremum principles,
it is perfectly well-defined and makes physical sense.
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will begin by postulating a guiding principle [12, 13], which turns out to be as powerful as the
principle of equivalence, in obtaining the gravitational dynamics.

Let us recall that the equations of motion for matter, derived from an action principle, remain
invariant if we add a constant to the matter Lagrangian, i.e., under the change Lm → Lm+
constant. This encodes the principle that the zero level of energy density does not affect the
dynamics. Motivated by this fact, it seems reasonable to postulate that the gravitational field
equations should not break this symmetry, which is already present in the matter sector. Since
Tab will occur, in one form or another, as the source for gravity (as can be argued from the
principle of equivalence and considerations of the Newtonian limit), we postulate that:

I The extremum principle that determines the dynamics of spacetime must be invariant under
the change T a

b → T a
b + (constant) δab .

This principle leads to two useful results:
First, this principle rules out the possibility of varying the metric tensor gab in a covariant,

local, action principle to obtain the field equations! It is easy to prove [35] that if (i) the
action is obtained from a local, covariant Lagrangian integrated over a region of spacetime with
the covariant measure

√
−g d4x and (ii) the field equations are obtained through unrestricted

variation7 of the metric in the action, then the field equations cannot remain invariant under
T a
b → T a

b + (constant) δab . In fact, Lm → Lm+ constant is no longer a symmetry transformation
of the action if the metric is treated as the dynamical variable. Therefore, any variational
principle we come up with cannot have gab as the dynamical variable.

As I highlighted in the last section, this need not scare us; it is certainly possible to come up
with variational principles leading to the field equations in which the metric is not a dynamical
variable. This brings us to the second result: The most natural structure, built from T a

b , which
maintains the required invariance under T a

b → T a
b + (constant) δab , is given by

Hm[ℓa] ≡ Tabℓ
aℓb (6)

where ℓa is a null vector.8 This is very similar to the right hand side of Eq. (4) except that
we are now using a null vector ℓa rather than a timelike vector ui to implement our guiding
principle. Demanding that the equation

Gabℓ
aℓb = Rabℓ

aℓb = 8πTabℓ
aℓb (7)

holds for all null vectors ℓa at each event will also lead to Ga
b = 8πT a

b + Λδab (where Λ is the
undetermined cosmological constant) and our guiding principle points towards such an approach.
While T a

b uau
b, changes under T a

b → T a
b + (constant) δab , the T a

b ℓaℓ
b, remains invariant, which is

what we want. But, ρ ≡ Tabu
aub has a clear physical meaning as the energy density measured

by an observer with velocity ui, but the physical meaning of Hm[ℓa] ≡ Tabℓ
aℓb is not obvious.

Our next task is to clarify that.
In the case of an ideal fluid, with T a

b = (ρ+ p)uaub + pδab , the combination T a
b ℓaℓ

b is actually
the heat density ρ+p = Ts where T is the temperature and s is the entropy density of the fluid.
(The last equality follows from Gibbs-Duhem relation and we have chosen the null vector with
(ℓ.u)2 = 1 for simplicity.) The invariance of T a

b ℓaℓ
b under T a

b → T a
b + (constant) δab reflects the

7 The second condition rules out unimodular theories and their variants, in which we vary the metric keeping√
−g fixed; I do not think we have a sound physical motivation for this approach.

8 We want to introduce a minimum number of extra variables. In d-dimensional spacetime, the null vector with
(d − 1) degrees of freedom is the minimum we need. In contrast, if we use, say, a combination T abVab with a
symmetric traceless tensor Vab, in order to maintain the invariance under T a

b → T a
b + (constant) δab , then we need

to introduce (1/2)d(d + 1) − 1 degrees of freedom; in d = 4, this introduces nine degrees of freedom, which is
equivalent to introducing three null vectors rather than one.
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PP

Figure 1. (a) Left: A freely falling observer, with an associated local inertial frame, defined
within the region marked by the black circle. The radius of this circle is decided by the curvature
of the spacetime at P. Light rays travelling at 45 degrees in the local inertial frame define the
light cones at P. (b) Right: A local Rindler observer who is accelerating with respect to the
inertial observer. For a sufficiently large acceleration, the trajectory of such an observer will be
close to the light cones emanating from P. The local Rindler observer will perceive the light
cone as a local Rindler horizon and attribute to it a temperature given by Eq. (8). In other
words, the vacuum fluctuations of the local inertial frame will appear as thermal fluctuations in
the local Rindler frame.

fact that the cosmological constant, with the equation of state p+ ρ = 0, has zero heat density.
Our guiding principle, as well as Eq. (7), suggests that it is the heat density rather than the
energy density which is the source of gravity.

But T a
b u

bua is the energy density for any kind of T a
b , not just for that of an ideal fluid. How

do we interpret T a
b ℓaℓ

b in a general context when T a
b could describe any kind of source – not

necessarily a fluid – for which concepts like temperature and entropy do not exist intrinsically?
Remarkably enough, this can be done. In any spacetime, around any event, there exists a
class of observers (called local Rindler observers) who will interpret T a

b ℓaℓ
b as the heat density

contributed by the matter to a null surface which they perceive as a horizon. This motivates us
to introduce [4] the concept of local Rindler frame (LRF) and local Rindler observers which will
allow us to provide a thermodynamic interpretation of T a

b ℓaℓ
b for any T a

b . This arises as follows:
In a region around any event P, we first introduce the freely falling frame (FFF) with

coordinates (T,X). Next, we boost from the FFF to a local Rindler frame (LRF) with
coordinates (t,x) constructed using some acceleration a, through the transformations: X =√
2ax cosh(at), T =

√
2ax sinh(at) when |X| > |T | and similarly for other wedges. One of the

null surfaces passing though P, will get mapped to the X = T surface in the FFF and will act as
a patch of horizon to the x = constant Rindler observers. This construction leads to a beautiful
result [22, 23] in quantum field theory. The local vacuum state, defined by the freely-falling
observers around an event, will appear as a thermal state to the local Rindler observers with
the temperature:

kBT =

(
~
c

)( a

2π

)
(8)

where a is the acceleration of the local Rindler observer, which can be related to other geometrical
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variables of the spacetime in different contexts [see Fig. 1]. The existence of the Davies–Unruh
temperature tells us that around any event, in any spacetime, there exists a class of observers
who will perceive the spacetime as hot.

Let us now consider the flow of energy associated with the matter that crosses the null surface.
Nothing unusual happens when this is viewed in the FFF by the locally inertial observer. But the
local Rindler observer attributes a temperature T to the horizon and views it as a hot surface.
Such an observer will interpret the energy ∆E, dumped on the horizon, by the matter that
crosses the null surface, as energy added to a hot surface, thereby contributing a heat content
∆Q = ∆E. (Recall that, as seen by the outside observer, matter actually takes infinite amount
of time to cross a black hole horizon, thereby allowing for thermalization to take place. Similarly,
a local Rindler observer will find that the matter takes a very long time to cross the horizon.) To
compute ∆E in terms of T a

b , note that the LRF provides us with an approximate Killing vector
field ξa, generating the Lorentz boosts, which coincides with a suitably defined null normal ℓa

at the null surface. The heat current arises from the energy current Tabξ
b of matter and hence

the total heat energy dumped on the null surface will be:

Qm =

∫ (
Tabξ

b
)
dΣa =

∫
Tabξ

bℓa
√
γd2xdλ =

∫
Tabℓ

bℓa
√
γd2xdλ (9)

where we have used the result that ξa → ℓa on the null surface. So we find that9

Hm[ℓa] ≡
dQm√
γd2xdλ

= Tabℓ
aℓb (10)

can indeed be interpreted as the heat density (energy per unit area per unit affine time) of the
null surface, contributed by matter crossing a local Rindler horizon, as interpreted by the local
Rindler observer. This interpretation works in the LRF irrespective of the nature of T a

b . So, the
need to work with Hm, forced on us by our guiding principle, leads to the introduction of local
Rindler observers in order to interpret this quantity as the heat density.

There is an alternative interpretation ofHm which will prove to be useful. Since the parameter
λ (defined through ℓa = dxa/dλ) is similar to a time coordinate, we can also think of Hm[ℓa]
in Eq. (10) as the heat generated per unit area of null surface per unit time. But since there
are null surfaces through any event in the spacetime, we will always have observers who see
the matter heating up these surfaces! This is something we probably do not want and we will
see later on that gravity comes to our rescue. As we will see, contribution to the heating from
the microscopic degrees of freedom of the spacetime precisely cancels out Hm[ℓa] on all the null
surfaces.10

4. Heat density of atoms of space
Let us get back to the task of constructing an extremum principle from which we can obtain
the field equations. We have argued that matter sector appears in the extremum principle
through the combination Hm = Tab(x)ℓ

aℓb which has the interpretation of the heat density (or
the heating rate) contributed to a null surface by the matter crossing it. We also saw that we
cannot vary the metric in the extremum principle. But in any variational principle constructed

9 Since null vectors have zero norm, there is an overall scaling ambiguity in such expressions. This is resolved by
considering the hyperboloids σ2 ≡ X2 − T 2 = 2ax constant and treating the light cone as the degenerate limit
σ → 0 of the hyperboloids. We set ℓa = ∇aσ

2 ∝ ∇ax and take the corresponding limit. The motivation for this
choice will become clearer later on.
10 Our use of LRF is strictly limited to the purpose of interpreting Hm. I do not introduce the notion of entropy
for the Rindler horizon (as proportional to its area) or work with its variation.
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from Hm, we now have the option of varying ℓa and leaving the metric alone. Such a variational
principle can take the form:

Qtot ≡
∫

√
γ d2x dλ

(
Hm[xi, ℓa] +Hg[x

i, ℓa]
)
; Hm[xi, ℓa] ≡ Tab(x)ℓ

aℓb (11)

where we will interpret Hg as the contribution to the heat density from the microscopic degrees
of freedom of geometry (‘atoms of space’). This should depend on both xi and ℓa for the
variational principle to be well defined. The success of this approach depends on our coming up
with a candidate for Hg[x

i, ℓa] which is physically well-motivated and also depends on the null
vectors at each event. I will now show how this can be achieved.

Since Hg has the dimension of energy density, it is convenient to write it as L−4
P f(xi, ℓa)

where we have introduced a length scale LP to set the dimensions and f denotes the number of
atoms of space at an event xi with an extra attribute characterized by a null vector ℓa. So the
total heat density now becomes:

Qtot ≡ Qm +Qg ≡
∫

√
γ d2x dλ

(
T a
b (x)ℓaℓ

b + L−4
P f [xi, ℓa]

)
(12)

Our next task is to determine f . It appears natural to assume that the number of atoms of
space, f , (i.e., the microscopic degrees of freedom, contributing to the heat density) at an event
P should be proportional to either the area or volume (which are the most primitive constructs)
we can “associate with” the event P. So we need to give precise meaning to the phrase, “area or
volume associated with” the event P. To do this we first introduce the notion of equi-geodesic
surface, which can be done either in the Euclidean sector or in the Lorentzian sector; we will work
in the Euclidean sector. An equi-geodesic surface S is the set of all events at the same geodesic
distance σ from some event, which we take to be the origin [36–39]. A natural coordinate system
to describe such a surface is given by (σ, θ1, θ2, θ3) where σ, the geodesic distance from the origin,
acts as the “radial” coordinate and θα are the angular coordinates on the equi-geodesic surfaces
corresponding to σ = constant. The metric in this coordinate system becomes:

ds2E = dσ2 + hαβdx
αdxβ (13)

where hαβ is the induced metric11 on S. The most basic quantities we can now introduce are

the volume element
√
g d4x in the bulk and the area element for S given by,

√
h d3x. For the

metric in Eq. (13),
√
g =

√
h, and hence, both these measures are identical. Using standard

differential geometry, one can show [40] that, in the limit of σ → 0, either of these is given by:

√
h =

√
g = σ3

(
1− 1

6
Eσ2

)√
hΩ; E ≡ Ra

bnan
b (14)

where na = ∇aσ is the normal to S and
√
hΩ arises from the standard metric determinant of

the angular part of a unit sphere. The second term containing E gives the curvature correction
to the area of (or the volume enclosed by) an equi-geodesic surface. Eq. (14) is a standard result
in differential geometry and is often presented as a measure of the curvature at any event.

We can now “associate” an area (or volume) with an event P in a natural way by the following
limiting procedure: (i) Construct an equi-geodesic surface S centered on P at a geodesic distance
σ; (ii) compute the volume enclosed by S and the surface area of S; and (iii) take the limit of
σ → 0 to define the area (or volume) associated with P . However, as we can readily see from
Eq. (14), these measures vanish in the limit of σ → 0.

11 This is the analogue of the synchronous frame in the Lorentzian spacetime, with xα being the angular
coordinates.
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This is, however, to be expected. The existence of microscopic degrees of freedom requires
some form of discrete structure in the spacetime and they cannot be meaningfully defined if
the spacetime is treated as a continuum all the way, just as we cannot have finite number of
molecules in a fluid if it is treated as a continuum all the way. Classical differential geometry,
which is what we have used so far, knows nothing about any discrete spacetime structure and
hence cannot give us a nonzero Hg. To obtain a nonzero Hg from the above considerations,
we need to ask how the geodesic interval and the spacetime metric get modified in a quantum
description of spacetime and whether such a modified description will have a

√
h (or

√
g) which

does not vanish in the coincidence limit. I will now turn to this task.

5. Points with finite area!
There is fair amount of evidence (see e.g., [41–46]) to suggest that a primary effect of quantum
gravity will be to introduce into the spacetime a zero-point length, by modifying the geodesic
interval σ2(x, x′) between any two events x and x′ (in a Euclidean spacetime) to a form like
σ2 → σ2 + L2

0 where L0 is a length scale of the order of Planck length.12

While we do not know how quantum gravity modifies the classical metric, we have an
indirect handle on it if we assume that quantum gravity introduces a zero point length to
the spacetime. This arises as follows: Just as the original σ2 can be obtained from the original
metric gab, we would expect the quantum gravity-corrected geodesic interval S(σ2) to arise from
a corresponding quantum gravity-corrected metric [36], which we will call the q-metric qab. But
no such local, non-singular qab can exist because, for any such qab, the resulting geodesic interval
will vanish in the coincidence limit, by definition of the integral. Therefore, we expect qab(x, x

′)
to be a bitensor, which should be singular at all events in the coincidence limit x → x′. We can
determine [37,38] its form by using two conditions: (i) It should lead to a geodesic interval S(σ2)
and (ii) Green’s function describing small metric perturbations should have a finite coincidence
limit. These conditions determine qab uniquely [38] in terms of gab (and its associated geodesic
interval σ2). We find that:

qab = Ahab +Bnanb; qab =
1

A
hab +

1

B
nanb (15)

with

B =
σ2

σ2 + L2
0

; A =

(
∆

∆S

)2/D1 σ2 + L2
0

σ2
; na = ∇aσ (16)

where D is the spacetime dimension , Dk ≡ D−k. The ∆ is the Van-Vleck determinant related
to the geodesic interval σ2 by:

∆(x, x′) =
1√

g(x)g(x′)
det

{
1

2
∇x

a∇x′
b σ2(x, x′)

}
(17)

and ∆S is the corresponding quantity computed by replacing σ2 by S(σ2) (and gab by qab in
the covariant derivatives) in the above definition. For our purpose of determining Hg, we will

compute the area element (
√
h d3x) of an equi-geodesic surface and the volume element (

√
q d4x)

for the region enclosed by it, using the renormalized q-metric. (For the q-metric in Eq. (15),
corresponding to the gab in Eq. (13), these two measures will not be equal, because q00 ̸= 1.) If

12 A more general modification can take the form of σ2 → S(σ2) where the function S(σ2) satisfies the constraint
S(0) = L2

0 with S′(0) finite. Our results are insensitive to the explicit functional form of S(σ2). So, for the sake
of illustration, we will use S(σ2) = σ2 + L2

0.
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our ideas are correct, we should get a non-zero limit and there must be a valid mathematical
reason to prefer one of these measures over the other.

The computation is straightforward and we find (for S(σ2) = σ2 + L2
0 in D = 4, though

similar results [47,48] hold in the more general case in D dimensions) that:

√
q = σ

(
σ2 + L2

0

) [
1− 1

6
E
(
σ2 + L2

0

)]√
hΩ (18)

and:13

√
h =

(
σ2 + L2

0

)3/2 [
1− 1

6
E
(
σ2 + L2

0

)]√
hΩ (19)

When L2
0 → 0, we recover the standard result in Eq. (14), as we should. Our interest, however,

is in the limit σ2 → 0 at finite L0. Something remarkable happens when we take this limit. The
volume measure

√
q vanishes (just as for the original metric) but

√
h has a non-zero limit:

√
h = L3

0

[
1− 1

6
EL2

0

]√
hΩ (20)

The q-metric (which we interpret as representing the renormalized/dressed spacetime) attributes
to every point in the spacetime a finite area measure, but a zero volume measure! Since L3

0

√
hΩ

is the volume measure of the σ = L0 surface, we define [32] the dimensionless density of the
atoms of spacetime, contributing to the gravitational heat density, as:

f(xi, na) ≡
√
h

L3
0

√
hΩ

= 1− 1

6
EL2

0 = 1− 1

6
L2
0Rabn

anb (21)

So far we have been working in the Euclidean sector with na = ∇aσ being normal to the
equi-geodesic surface. The limit σ → 0 in the Euclidean sector makes the equi-geodesic surface
shrink to the origin. But, in the Lorentzian sector this leads to the null surface which acts as the
local Rindler horizon around this event. So, in this limit, we can identify na with the normal to
the null surface ℓa and express the gravitational heat density as

f(xi, ℓa) = 1− 1

6
L2
0Rabℓ

aℓb (22)

To see this in some detail, consider the Euclidean version of the local Rindler frame.14 The local
Rindler observers, living on the hyperboloid R2 − T 2 = σ2 perceive local patches of the light

13 This result is rather subtle. One might think that the result in Eq. (19) (which is
√
h = A3/2√g) arises from

the standard result Eq. (14), by the simple replacement of σ2 → (σ2 + L2
0). But note that this replacement does

not work for the result in Eq. (18) (which is
√
q =

√
BA3/2√g) due to the

√
B = σ(σ2 + L2

0)
−1/2 factor which

has the limiting form
√
B ≈ σ/L0 when σ → 0. This is why the each event has zero volume, but finite area

associated with it!. A possible insight into this curious feature is provided by the following fact: The leading
order dependence of

√
qdσ ≈ σdσ shows that the volumes scale as σ2 while the area measure is finite. This, in

turn, is related to the fact [47] that the effective dimension of the renormalized spacetime becomes D = 2 close to
Planck scales independent of the original D. This result has been noticed by several people [49–52] in different,
but specific, models of quantum gravity. Our approach leads to this result in a model-independent manner, which,
in turn, is connected with the result that events have zero volume, but non-zero area.
14 There are two ways of extending the null surface and Rindler observers off the TX plane. One can extend
the null lines (45 degree lines in Fig. 1) to the null plane T = X in spacetime and similarly for the hyperboloid.
Alternatively, one can extend the null lines to the null cone by R2 − T 2 = 0 with R2 = X2 + Y 2 + Z2 and the
hyperboloid R2 − T 2 = constant will go ‘around’ the null cone in the spacetime (see the left part of Fig. 2).
Observers living on this hyperboloid will use their respective (rotated) X axis to study the Rindler frame physics.
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Figure 2. (a) Left: In the local inertial frame, the light cones originating from an event (taken
to be the origin) are null surfaces with R2−T 2 = 0, with a normal ℓa. The local Rindler observers
live on the hyperboloid R2 − T 2 = σ2 = constant around these light cones and perceive a patch
of the light cone as a local Rindler horizon with a finite temperature. The arrow denotes the
normal to the hyperbola. (b) Right: In the Euclidean sector, the hyperboloid R2−T 2 = σ2 will
become a sphere R2 + T 2

E = σ2
E and the normal to the hyperboloid becomes the normal to the

sphere. The light cone R2 − T 2 = 0 will go over to R2 + T 2
E = 0 which collapses into the origin.

The limit σE → 0 in the Euclidean sector corresponds to approaching the Rindler horizon in the
Lorentzian sector. In this limit the hyperboloid degenerates into the light cones emanating from
P. The direction of the normal to the sphere becomes ill-defined in the Euclidean sector when
the radius of the sphere shrinks to zero. In the Lorentzian sector we can take it to be the normal
to null surface in the limit when the hyperboloid degenerates to the light cone. The dependence
of f on na in the Euclidean equi-geodesic surface is what translates to its dependence on the
null normal ℓa in the Lorentzian sector.

cone R2 − T 2 = 0 as their horizon (see the left half of Fig. 2). If we now analytically continue
to the Euclidean sector, the hyperboloid R2 − T 2 = σ2 will become a sphere R2 + T 2

E = σ2
E (see

the right half of Fig. 2). The light cones R2 − T 2 = 0 goes over to R2 + T 2
E = 0 and collapses

into the origin. So, taking the limit σE → 0 in the Euclidean sector corresponds to approaching
the local Rindler horizons in the Lorentzian sector. This is the limit in which the hyperboloid
degenerates into the light cones emanating from P. The normal na to the Euclidean sphere can
then be identified with the normal to the null surface ℓa. The dependence of f on na in the
Euclidean equi-geodesic surface is what translates to its dependence on the null normal ℓa in
the Lorentzian sector.

So the contribution to the gravitational heat density on a null surface in Eq. (12) is obtained
by integrating L−4

P f(xi, ℓj) over the volume:

Qg =

∫ √
γd2xdλ

L4
P

f(xi, ℓj) =

∫ √
γd2xdλ

L4
P

[
1− 1

6
L2
0(Rabℓ

aℓb)

]
(23)

The numerical factor in front of the second term depends on the ratio L0/LP which we expect
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to be of order unity, if LP is the standard Planck length. This ratio cannot be determined
without better knowledge of quantum gravity. But we get the correct equations with the choice
L2
0 = (3/4π)L2

P , which we will make.15 The full variational principle is then based on the
functional:

Qtot ≡
∫

√
γ d2x dλ (T a

b (x)ℓaℓ
b + L−4

P f [xi, ℓa]) =

∫
√
γ d2x dλ

[
1

L4
P

+

{
T a
b − 1

8πL2
P

Ra
b

}
ℓaℓ

b

]
(24)

Extremising this functional with respect to ℓa after introducing a Lagrange multiplier to keep
ℓ2 = 0 and demanding the extremum holds for all ℓa at an event again leads to the result
Ra

b−8πT a
b = λ(x)δab where λ(x) is the Lagrange multiplier. Using Bianchi identity and∇aT

a
b = 0,

we will recover the field equations except for a cosmological constant. (There is actually a way
to determine its value, which I will discuss in Sec. 5.5.)

There are several points which are noteworthy about this result which I will now comment
upon:

5.1. A crucial minus sign
We defined the heat density of gravity as L−4

P f(x, na) with the number of atoms of space f being
given by the limit:

f(xi, na) ≡ lim
σ→0

√
h(x, σ)

L3
0

√
hΩ

(25)

in a renormalized spacetime with a zero-point length. The result had the combination Rb
anbn

a,
at the relevant order, which is crucial. Further, this term came with a minus sign without which
the programme would have failed.

These results bring to the center-stage the geodesic interval σ2(x, x′) (rather than the metric)
as the proper variable to describe spacetime geometry [48]. In a classical spacetime, σ2(x, x′)
and gab(x) contain the same amount of information and each is derivable from the other. But
σ2(x, x′) seems to be better suited to take into account quantum gravitational effects to certain
extent.

5.2. Dissipation without dissipation
We mentioned earlier that one could have also thought of Hm as the heating rate of the null
surface by matter. We see that the corresponding heating rate of the null surface by the atoms
of space precisely compensates this on-shell leaving an unobservable constant factor L−4

P . (Since
we can add any quantity independent of ℓa to the integrand of Qtot, we can even renormalize this
away; we leave it because it has an interesting implication for cosmological constant; see Sec.
5.5). So the field equation, which is now in the form of Eq. (7), has a clear physical meaning;
both sides represent the heating rate of null surfaces and Einstein’s equation arises as a heat
balance equation.

This interpretation is reinforced by the fact that the term Rabℓ
aℓb is related to the “dissipation

without dissipation” [26] of the null surfaces, which can be described as follows: Introduce the
second null vector ka and define the 2-metric on the cross-section of the null surface in the
standard manner, qab = gab + kakb + ℓaℓb. Next define the expansion θ ≡ ∇aℓ

a and shear
σab ≡ θab − (1/2)qabθ where θab = qiaq

j
b∇iℓj . (We take the null congruence to be affinely

parametrized.) One can then show that (see e.g., eq(A60) of [12]):

− 1

8πL2
P

Rabℓ
aℓb =

[
2ησabσ

ab + ζθ2
]
+

1

8πL2
P

1
√
γ

d

dλ
(
√
γθ) ≡ D +

1

8πL2
P

1
√
γ

d

dλ
(
√
γθ) (26)

15 If we took the gravitational heat density as µf/L4
P where µ is a factor of order unity, the numerical coefficients

will change. We take µ = 1 as a natural choice.
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where η = 1/16πL2
P , ζ = −1/16πL2

P are the shear and bulk viscous coefficients [1–3] and D is
the viscous dissipation rate. So ignoring the total divergence term and the constant, the relevant
part of Qtot in Eq. (24) can be expressed as

Qtot =

∫
√
γ d2x dλ

(
T a
b (x)ℓaℓ

b +
[
2ησabσ

ab + ζθ2
])

=

∫
√
γ d2x dλ

(
T a
b (x)ℓaℓ

b +D
)

(27)

Both terms now have an interpretation of the rate of heating (due to matter or atoms of
spacetime).16 Our extremum principle can be thought of extremising the rate of production
of heat on the null surface.

5.3. Connection with the entanglement entropy
The combination Ra

bnan
b, which is crucial to our results, arises in several geometrical quantities

just as it came up in the area measure
√
h in Eq. (20). In particular, this combination has

some relevance to entanglement entropy, in the following sense. In the literature, it is usually
claimed that the entanglement entropy S of a field partitioned by, say, a horizon is proportional
to the area of the horizon. To be precise, this statement is meaningless because the entanglement
entropy S is a divergent quantity. For example, for a free, massless, scalar field in D dimensional
spacetime, S is given by the expression:

S =
AD−2

12

∫ ∞

0

ds

s
KD−2(x, x; s) (28)

where AD−2 is the transverse area and K(x, y; s) is the Schwinger proper time Kernel [53, 54].
In the coincidence limit, the KD−2(x, x; s) ∝ s−(D−2)/2 and the integral in Eq. (28) diverges as

L
−(D−2)
c at the lower limit where Lc is a lower cutoff length scale. In D = 4 spacetime this gives

S ∝ A⊥/L
2
c , which diverges quadratically, which is the standard result.

The introduction of a zero-point length into the spacetime corresponds to introducing a
regulator exp(−L/s) into the heat Kernel (with some cutoff scale L) which will render the
entanglement entropy finite [30] and these calculations meaningful. What is more, the Kernel will
also pick up a Van Vleck determinant in a curved spacetime which also contains the factorRa

bnan
b

over and above the flat spacetime result. This suggests that one may be able to relate f(xi, na)
in Eq. (21) to the entanglement entropy which could provide an alternative interpretation to
our results. This idea could be tested by computing the entanglement entropy of a field in the
renormalized spacetime with zero-point length, which renders it finite in a systematic manner.

5.4. The mechanism that couples matter to spacetime
The coupling between spacetime geometry and matter is now through a vector field ℓa and –
at the lowest order – they couple to ℓa through the terms Ra

b ℓaℓ
b and T a

b ℓaℓ
b respectively. The

physical origin of these two couplings is quite distinct. The T a
b ℓaℓ

b arises from the behaviour of
matter crossing the local Rindler horizon and the ℓa in this expression represents the normal to
the local Rindler horizon. The Ra

b ℓaℓ
b term, however, arose from the limit of the area measure√

h in a spacetime with zero-point length involving Ra
bnan

b. The na in this case is identified
with the normal ℓa to the null surface through a limiting process when one takes the limit σ → 0
in the Euclidean sector. This, in turn, depends on the fact that the condition σ2(x, y) = 0 will
lead to x = y in the Euclidean space while it will describe all events connected by a null ray in
the Lorentzian space.

16 Equation (26) is just a restatement of the Raychaudhuri equation. What is relevant in the extremum principle is
the quadratic terms in shear and expansion while the the term giving the change in the cross-sectional area of the
congruence is a total divergence and is irrelevant. This tells us that ignoring the quadratic terms of Raychaudhuri
equation can miss a key element of physics; see also [24].
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More generally, we can introduce a vector na that couples to spacetime curvature through
Ra

bnan
b and to matter through T a

b nan
b thereby providing an indirect coupling between matter

and geometry. In a way this is conceptually rather satisfactory. In the conventional approach to
Einstein’s theory we actually do not have a mechanism which tells us how T a

b ends up curving
the spacetime. The relation Ga

b = 8πT a
b equates apples and oranges; the left hand side is

purely geometrical while the right hand side is made of matter with large number of discrete
(quantum) degrees of freedom. An equation of the kind, Ga

bnan
b = 8πT a

b nan
b, on the other

hand, does better in this regard. We can hope to interpret both sides independently (say, as
the heat densities) and think of this equation as a balancing act performed by spacetime. Such
a description is reinforced by the extremum principle in Eq. (24) in which both Ra

bnan
b and

T a
b nan

b can be thought of as distorting the value of f from unity and the gravitational field
equations restores the value f = 1 on-shell. (I will say a little more about this in the last
section.)

Since the classical gravity is obtained by extremising Qtot in Eq. (24) with respect to na, we
could ask whether it is meaningful to attempt a quantum theory for na using a path integral.
This would require evaluating the path integral

Z =

∫
Dna δ

[
n2

]
exp iQtot [na] (29)

Incorporating δ
[
n2

]
through a functional Fourier transform with respect to a Lagrange multiplier

field λ[x] we can reduce this to the form:

Z ∝
∏
x

∫
Dλ(x)

∫
Dna(x) exp i

[
(Ma

b + λδab )nan
b
]
x
∝

∏
x

∫
Dλ(x) Det−1/2 [Ma

b + λδab ]x (30)

where Ma
b ≡ T a

b − (8πL2
P )

−1Ra
b . This is a rather intriguing theory which will lead to Einstein’s

equations in the saddle point limit if we demand that the saddle point condition should hold
for all na. The Euclidean version of this theory suggests working with exp(Qg) and it will be
interesting to explore this further.17

5.5. Relevance to the cosmological constant problem
On shell, when the equations of motion hold, the two terms in the curly brackets in Eq. (24)
cancel each other and the net heat density has the Planckian value 1/L4

P , which, of course, has
no gravitational effect. But it tells us that there is a zero-point contribution to the degrees of
freedom in spacetime, which, in dimensionless form, is just unity. Therefore, it makes sense to
ascribe A/L2

P degrees of freedom to an area A, which is consistent with what we know from

earlier results in this subject. So a two-sphere S(2)of radius LP has fS(2) = 4πL2
P /L

2
P = 4π,

which was the crucial input that was used in a previous work to determine the numerical value of
the cosmological constant for our universe. (This is similar to assigning dN/d3xd3p = f(xi, pa)
molecules to a phase volume. In kinetic theory, we do not worry about the fact that f is
not always an integer. In the same spirit we are not concerned by the fact that 4π is not an
integer.). Thus, the microscopic description does allow us to determine [55,56] the value of the
cosmological constant, (which arose as an integration constant), as it should in any complete
description.

Let me elaborate a little bit on this aspect, since it can provide a solution to what is usually
considered the most challenging problem of theoretical physics today.

17 If we write the null vector as ℓa ≡ q(x)ℓ̄a where ℓ̄a ≡ ∇aσ is an affinely parametrized null normal, then we can
upgrade just q(x) to a dynamical field with the Lagrangian L = (1/2)(∂q)2 − q2[Ma

b ℓaℓ
b]. Integrating over q(x),

treating it as a rapidly varying fluctuation (with [Ma
b ℓaℓ

b] approximately constant) will lead to an effective action
Aeff for [Ma

b ℓaℓ
b] such that δAeff = 0 is the same as δQtot = 0. I will describe this in detail elsewhere.
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Observations suggest that our universe has three distinct phases of expansion: (i) An
inflationary phase with an approximately constant density ρinf , fairly early on. (ii) A phase
dominated, first by radiation and then by matter, with ρ = ρeq[x

−4 + x−3], where aeq is the
epoch at which the matter and radiation densities were equal, x(t) ≡ a(t)/aeq and the ρeq is a
constant equal to the energy density of either matter or radiation at a = aeq. (iii) An accelerated
phase of expansion at late stages, driven by the energy density ρΛ of the cosmological constant.
These three constants [ρinf , ρeq, ρΛ] completely specify the dynamics of our universe and act as
its signature. Of these ρinf and ρeq can, in principle, be determined by standard high energy
physics. But we need a new principle to fix the value of ρΛ, which is related to the integration
constant that appears in the field equations in our approach.

It turns out that such a universe, with these three phases, harbors a new conserved quantity,
which is the number N of length scales (or radial geodesics), that cross the Hubble radius
during any of these phases [55, 56]. Any physical principle which can determine the value of N
during the radiation-matter dominated phase, say, will fix the value of ρΛ in terms of [ρinf , ρeq].
Taking the modes into the very early phase, we can fix the value of this conserved quantity N
at the Planck scale, as the degrees of freedom in a two-sphere of radius LP . In other words, we
take N = 4πL2

P /L
2
P = 4π. This, in turn, leads to a remarkable prediction relating the three

densities [55,56]:

ρΛ ≈ 4

27

ρ
3/2
inf

ρ
1/2
eq

exp(−36π2) (31)

From cosmological observations, we know that ρ
1/4
eq = (0.86 ± 0.09)eV; if we assume that

the range of the inflationary energy scale is ρ
1/4
inf = (1.084 − 1.241) × 1015 GeV, we get

ρΛL
4
P = (1.204− 1.500)× 10−123, which is consistent with the observations! This approach for

solving the cosmological constant problem provides a unified view of cosmic evolution, connecting
the three phases through Eq. (31) in contrast with standard cosmology in which the three phases
are joined together in an unrelated, ad hoc manner.

Moreover, this approach to the cosmological constant problem makes a falsifiable prediction,
unlike any other approach I am aware of. From the observed values of ρΛ and ρeq, we can predict
the energy scale of inflation within a very narrow band – to within a factor of about five – if
we include the ambiguities associated with reheating. If future observations show that inflation
occurred at energy scales outside the band of (1− 5)× 1015 GeV, our model for explaining the
value of cosmological constant is ruled out.

6. Summary of the logical structure
Let me reiterate the logical sequence described in this work which leads to a completely different
perspective on gravity and the derivation of its field equations.

I We postulate that the gravitational field equations should arise from an extremum principle
which remains invariant under the transformation T a

b → T a
b + δab (constant).

I This leads to two conclusions: (a) Metric tensor cannot be a dynamical variable which is
varied in the extremum principle. (b) The T a

b should appear in the extremum principle
though the combination Hm(xi, ℓa) ≡ T a

b ℓaℓ
b where ℓa is a null vector.

I We next look for a physical interpretation of Hm(xi, ℓa) for an arbitrary T a
b and find that,

in any spacetime, the local Rindler observers will interpret Hm(xi, ℓa) as the heat density
contributed to a null surface by the matter crossing it. This interpretation works for any T a

b
and provides a strong motivation for introducing local Rindler observers in the spacetime.

I Since (i) the metric cannot be a dynamical variable and (ii) we now have the auxiliary null
vector field ℓa arising through Hm(xi, ℓa), we look for an extremum principle in which ℓa
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is varied. The extremum should hold for all null vectors at any event and constrain the
background metric.

I We take the integrand of the extremum principle to be Hm(xi, ℓa) + Hg(x
i, ℓa) where

Hg(x
i, ℓa) ≡ L−4

P f(xi, ℓa) is interpreted as the heat density due to microscopic spacetime
degrees of freedom. We have introduced a length scale LP from dimensional considerations
and f is the dimensionless count of the microscopic degrees of freedom.

I A discrete count for microscopic degrees of freedom implies a discrete nature for spacetime
at Planck scales. We incorporate this fact by an effective, renormalized/dressed metric qab
which ensures that the geodesic distance of the effective metric has a zero-point length and
is given by σ2(x, x′)+L2

0 where σ2(x, x′) is the geodesic distance of the classical spacetime.
We take L2

0 = (3/4π)L2
P .

I The spacetime degrees of freedom at an event is taken to be proportional to the area of an
equi-geodesic surface centered at that event in the limit of vanishing geodesic distance (see
Eq. (25)). With this choice, one obtains an extremum principle based on Eq. (24). Varying
this with respect to all null vectors ℓa and demanding the equation to hold for all ℓa at an
event leads to Einstein’s equation with an undetermined cosmological constant.

I When equations of motion hold, we can assign A/L2
P degrees of freedom with every area

element A in spacetime. This, in turn, allows us to fix the value of the undetermined
cosmological constant correctly and provides a solution to the cosmological constant problem.

7. Conclusions and open questions
The approach outlined here is based on the idea that gravity is the thermodynamic limit
of the statistical mechanics of certain microscopic degrees of freedom (‘atoms of space’).
In the thermodynamic limit, deriving the field equations of classical gravity is algebraically
straightforward – one might even say trivial, but let us not shun simplicity! It is obtained from
an extremum principle based on the functional:

Qthermo =

∫
√
γ d2x dλ

{
T a
b − 1

8πL2
P

Ra
b

}
ℓaℓ

b (32)

Varying ℓa in Qthermo with the constraint that ℓ2 = 0 and demanding that the result holds for
all ℓa will lead to Einstein’s equation with an arbitrary cosmological constant. The approach
works for a wild class of gravitational theories including the Lanczos-Lovelock models.

As far as classical gravity goes, that is the end of the story. But we could enquire about
the physical meaning of this extremum principle.18 The combination T a

b ℓaℓ
b is invariant under

the shift T a
b → T a

b + δab (constant) – which was the original reason to put it in the variational
principle. Postulating that the extremum principle must be invariant under the transformation
T a
b → T a

b +δab (constant) naturally leads to the introduction of T a
b ℓaℓ

b in the variational principle
and to the local Rindler observers for its interpretation. As I mentioned earlier, this itself is a
valuable insight and shows the connection between two features – viz. the immunity of gravity
to shifts in the cosmological constant and the thermodynamic interpretation of gravity – which
were considered as quite distinct.

Further T a
b ℓaℓ

b does have the interpretation as the heat density of matter on any null surface.
It is also possible to interpret Ra

b ℓaℓ
b as the heating rate (“dissipation without dissipation”; see

Sec. 5.2) of the null surface [27], thereby providing a purely thermodynamic underpinning for
classical gravity. None of this poses any conceptual or technical problem.

18 We do not enquire about the physical meaning of the Einstein-Hilbert action – it has none – in the conventional
approach; but then we are now trying to improve on the conventional approach!
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The real issues arise when we try to go beyond the classical theory and provide a semi-classical
or quantum gravitational interpretation of this result. The description in terms of the expression
in Eq. (21) is approximate and only valid when L2

PR
a
bnan

b . 1. The entire description, based on
the q-metric acting as a proxy for the effective spacetime metric, cannot be trusted too close to
Planck scales. We expect it to capture the quantum gravitational effects to certain extent but
at present we have no way of quantifying the accuracy of this approach. (It should also be noted
that the identification na ≈ ℓa + ..... might have further corrections close to Planck scales.)

We also do not know how to deal with matter fields in a quantum spacetime and it is not
clear how to introduce T a

b in a systematic way. In fact, the only reason to vary the metric tensor
in an extremum principle – a procedure which I have argued against – is to obtain T a

b classically
and ⟨T a

b ⟩ semi-classically. None of the thermodynamic derivations, which leads to the exact
(rather than linearized) field equations, obtains T a

b (or ⟨T a
b ⟩) from fundamental considerations

based on a matter action. It is ironic that the problem arises from the matter sector rather than
from the gravity sector!

The ideas outlined in this work suggest a more radical solution. Matter, as we understand it,
is quantum mechanical; which essentially means that it is made of discrete degrees of freedom.
How does such a discrete structure end up curving the continuum geometry? That is, what is the
actual mechanism by which T a

b produces Ga
b? The approach developed here suggests that one

needs to introduce certain “hidden variables”, viz., the auxiliary vector field na, which encodes
the discrete nature of geometry, and couple it to T a

b (which is also fundamentally discrete in
nature). The continuum geometry has to be related to na, at scales much larger than the Planck
scale, by a suitable approximation just as the continuum density or pressure of a fluid arises
when we average over the discreteness of the molecules. I have outlined one possible way in
which this idea could be implemented but it is by no means unique. Further exploration of
this approach could lead to a better understanding of how matter really ends up curving the
spacetime.
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[2] Damour T 1982 Surface effects in black hole physics Proceedings of the Second Marcel Grossmann Meeting

on General Relativity
[3] Thorne K S, Price R H and MacDonald D A 1986 Black Holes: The Membrane Paradigm (Yale University

Press)
[4] Jacobson T 1995 Phys. Rev. Lett. 75 1260
[5] Padmanabhan T 2002 Class. Quant. Grav. 19 5387 (Preprint arXiv:gr-qc/0204019)
[6] Padmanabhan T 2004 Class. Quant. Grav. 21 4485 (Preprint arXiv:gr-qc/0308070)
[7] Padmanabhan T and Aseem Paranjape 2007 Phys. Rev. D 75 064004 (Preprint arXiv:gr-qc/0701003)
[8] Padmanabhan T 2010 Rep. Prog. Phys. 73 046901 (Preprint arXiv:0911.5004)
[9] Padmanabhan T 2010 Mod. Phys. Lett. A 25 1129–36 (Preprint arXiv:0912.3165)

[10] Verlinde E P 2011 JHEP 1104 029
[11] Smolin L General relativity as the equation of state of spin foam (Preprint arXiv:1205.5529)
[12] Padmanabhan T 2014 Gen. Rel. Grav. 46 1673
[13] Padmanabhan T 2015 Mod. Phys. Lett. A 30 1540007
[14] Jacobson T 2015 Entanglement equilibrium and the Einstein equation (Preprint arXiv:1505.04753)
[15] Smolin L 2015 The thermodynamics of quantum spacetime histories (Preprint arXiv:1510.03858)
[16] Parattu K, Majhi B R and Padmanabhan T 2013 Phys. Rev. D 87 124011 (Preprint arXiv:1303.1535)
[17] Chakraborty S and Padmanabhan T 2014 Phys. Rev. D 90 124017 (Preprint arXiv:1408.4679)
[18] Chakraborty T and Padmanabhan T 2015 Phys. Rev. D 92 104011 (Preprint arXiv:1508.04060)

EmQM15: Emergent Quantum Mechanics 2015 IOP Publishing
Journal of Physics: Conference Series 701 (2016) 012018 doi:10.1088/1742-6596/701/1/012018

19



[19] Chakraborty S, Parattu K and Padmanabhan T 2015 JHEP 10, 097 [arXiv:1505.05297].
[20] T. Padmanabhan, Phys.Rev., D 81, 124040 (2010) [arXiv:1003.5665].
[21] Chakraborty S and Padmanabhan T 2014 Phys. Rev. D90 084021 [arXiv:1408.4791]
[22] Davies P C W 1975 J. Phys. A 8 609
[23] Unruh W G 1976 Phys. Rev. D 14 870
[24] Kothawala D 2011 Phys.Rev. D 83 024026 [arXiv:1010.2207]
[25] Carroll S M. and Remmen G N What is the entropy in entropic gravity? [arXiv:1601.07558]
[26] Kolekar S and Padmanabhan T 2012 Phys.Rev. D 85 024004 [arXiv:1109.5353]
[27] Padmanabhan T 2011 Phys.Rev. D 83 044048 [arXiv:1012.0119]
[28] Chirco G, Eling C and Liberati S 2011 Phys.Rev. D 83 024032 [arXiv:1011.1405]
[29] Solodukhin S N 2011 Living Rev. Relativity 14 8 [arXiv:1104.3712]
[30] Padmanabhan T 2010 Phys.Rev. D 82 124025 [arXiv:1007.5066]
[31] Visser M 2011 JHEP 10 140 [arXiv:1108.5240]
[32] Padmanabhan T 2015 Entropy 17, 7420-52 [arXiv:1508.06286]
[33] Padmanabhan T 2010 Gravitation: Foundations and Frontiers (Cambridge University Press)
[34] Padmanabhan T 2008 Gen.Rel.Grav. 40 529-564 [arXiv:0705.2533]
[35] Padmanabhan T 2009 Adv. Sci. Lett. 2, 174–183.
[36] Kothawala D and Padmanabhan T 2014 Phys. Rev. D 90 124060
[37] Kothawala D 2013 Phys. Rev. D 88 104029
[38] Stargen D J. and Kothawala D 2015 Phys. Rev. D 92 024046 [arXiv:1503.03793]
[39] Kothawala D and Padmanabhan T 2015 Phys. Lett. B 748, 67–69
[40] Gray A 1974 Mich. Math. J. 20 329–344
[41] DeWitt B S 1964 Phys. Rev. Lett. 13, 114
[42] Padmanabhan T 1985 Gen. Rel. Grav. 17, 215
[43] Padmanabhan T 1985 Ann. Phys. 165, 38
[44] Padmanabhan 1997 Phys. Rev. Lett. 78 1854 [hep-th/9608182]
[45] Garay L 1998 Phys. Rev. Lett. 80 2508 (1998) [gr-qc/9801024]
[46] Garay L 1995 Int. J. Mod. Phys. A 10 145
[47] Padmanabhan T, Chakraborty S and Kothawala D 2015 Renormalized spacetime is two-dimensional at the

Planck scale [arXiv:1507.05669]
[48] Chakraborty S and Padmanabhan T work in progress
[49] Carlip S, Mosna R and Pitelli J 2011 Phys. Rev. Lett. 107 021303
[50] Ambjorn J, Jurkiewicz J and Loll R 2005 Phys. Rev. Lett. 95, 171301
[51] Modesto L 2009 Class. Quantum Grav. 26 242002
[52] Husain V, Seahra S S and Webster E J 2013 Phys. Rev. D 88 024014
[53] See e.g., Toms D J 2007 The Schwinger Action Principle and Effective Action (Cambridge University Press)
[54] Sriramkumar L and Padmanabhan T 2002 Int.J.Mod.Phys. D11 1-34 ( [gr-qc/9903054]
[55] Padmanabhan H and Padmanabhan T 2013 Int. J. Mod. Phys. D 22 1342001
[56] Padmanabhan T and Padmanabhan H 2014 Int. J. Mod. Phys. D 23 1430011

EmQM15: Emergent Quantum Mechanics 2015 IOP Publishing
Journal of Physics: Conference Series 701 (2016) 012018 doi:10.1088/1742-6596/701/1/012018

20




