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Abstract. The main restriction of k-distribution approaches for applications in radiative heat 

transfer in gaseous media arises from the use of a scaling or correlation assumption to treat 

non-uniform situations. It is shown that those cases can be handled exactly by using a 

multidimensional k-distribution that addresses the problem of spectral correlations without 

using any simplifying assumptions. Nevertheless, the approach cannot be suggested for 

engineering applications due to its computational cost. Accordingly, a more efficient method, 

based on the so-called Multi-Spectral Framework, is proposed to approximate the previous 

exact formulation. The model is assessed against reference LBL calculations and shown to 

outperform usual k-distribution approaches for radiative heat transfer in non-uniform media.  

1.  Introduction 

Radiative heat transfer in gaseous media is encountered in many engineering and research studies 

dedicated, for instance, to the effect of radiation on the structures of planetary atmospheres or for the 

calculation of heat fluxes at the walls of combustion chambers. The most accurate and flexible model 

to treat gas radiation interactions is the so-called Line-By-Line (LBL) approach. LBL spectra are based 

directly on spectroscopic databases and provide gas radiative properties at high resolution. 

Nevertheless, this method is computationally too expensive to be used in many situations. For most 

engineering applications, simpler models are required. 

Many approximate methods have been proposed during the past decades to treat radiative heat 

transfer in gaseous media. A compendium of the existing ones can be found for instance in Refs. [1,2]. 

Among them, k-distribution techniques are currently the most widely used, partly due to their ability to 

be applied together with any Radiative Transfer Equation (RTE) solver. They are usually accurate and 

can be readily extended to any band width, from narrow bands up to the Full Spectrum (FS), with 

minor modifications. The so-called ADF [3], FSK [4] and SLW [5] models are undoubtedly the most 

famous FS k-distribution approaches and have been applied to many engineering configurations. Over 

narrow bands, the Ck (Correlated-k) [1] model is recognized as one of the most relevant choices to 

treat gas radiation. All those models are essentially based on the same set of two equations (the first 

one for the k-distribution formulation in uniform media and the second one for its extension to non-
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uniform cases – this second equation is usually based on a scaling or correlated assumption of gas 

spectra in distinct thermophysical states). Those models provide good accuracy for most engineering 

applications but may fail to give reliable results when high temperature gradients are encountered 

along the radiation path. This is mainly due to the appearance of “hot lines” (at high temperature) that 

are missing in the gas spectra at low temperatures. The effect of these lines is to break the “ideal” 

behaviour of the gas spectra and may reduce drastically the accuracy of the approximate models based 

on this assumption. This problem (encountered for instance in IR plume signature, or in some emission 

spectroscopy configurations) can be solved by application of the so-called fictitious gases approach [6] 

or by using mapping techniques [7,8]. Those methods improve the accuracy of the approximate model 

but usually at the cost of a large increase in terms of computational resources.  

The aim of the present paper is to show that k-distributions can be formulated exactly in non-

uniform media by replacing the usual k-distribution concept (that is defined for a given thermophysical 

state) by a multidimensional one. Using this exact model in engineering applications cannot be 

suggested in a general frame but approximate solutions can be proposed. The method to approximate 

this exact solution for radiative transfer applications was described in a previous paper and led us to 

develop the so-called “Multi-Spectral Framework - MSF” [8]. It will be shown that all existing models 

are special cases of the MSF. This point is raised in Section 4. Results obtained through the application 

of this technique are assessed against reference LBL calculations in situations representative of 

engineering problems, in 0D (along line-of-sights) and 1D (plane parallel walls) geometries.  

2.  k-distribution methods  

k-distribution approaches were introduced in 1934 by Ambartzumian [9]. At this time, due to a lack of 

information about the real profiles of spectral lines, the absorption coefficient was assumed to be a 

periodic function of the wavelength. The same technique was used to treat real gas spectra (without 

any name but with reference to Ambartzumian’s work) during the following decades (see for instance 

Refs. [10,11]). The name “k-distribution” only appeared (to our knowledge) in 1972 [12]. Since then, 

many papers have been devoted to its application both in uniform (homogeneous isothermal) and non- 

uniform media [1,2].  

In these methods, the (narrow) band averaged transmission function of a path of length L inside a 

gas at a uniform temperature T , pressure P , and molar fraction in absorbing specie x  is expressed 

as: 

        
0

1
  exp    exp   L xP L d xPLk f k dk





  








   
     (1) 

where  f k  is the k-distribution function. For any real interval    0k,k dk , dk  ,    f k dk

represents the fraction of wavenumbers    such that the value of the spectral absorption 

coefficient of the gas is inside the interval  k,k dk . Eq. (1) can also be written in terms of the 

cumulative distribution of k-values,  g k , as: 

      
0

  L exp xPLk dg k


    (2) 

Eq. (2) mainly consists of a change of variable of integration k   (or equivalently  g k   as 

g is strictly monotonous). Therefore, it provides the exact band averaged transmission function. The 

main source of error arises in practice from the use of numerical quadratures to estimate this integral. 

Mathematically,  g k  associates to any value of k  a probability to find a value of   lower than 

k  inside  . This probability P  is defined as the fraction of the interval   such that k  . It can 

be written formally as [1]: 
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       
 

 
1 1

            
dg k

k, g k H k d f k k d
dk

  

 

       
 

 

        
  P  (3) 

In Eq. (3), H is the Heaviside function and   is the Dirac delta function defined as [13] (where F is 

any continuous function defined over the real axis and c is a constant): 

   0  x c , x c     (4) 

         x c F x dx F c




   (5) 

The notation used in the second term at the RHS in Eq. (3) is purely formal. In fact, “function” 

 k    is mathematically defined only if the absorption coefficient is strictly monotonous over the 

interval (viz. if the derivative of the absorption coefficient with respect to the wavenumber does not 

vanish, [13]) which is not the case in a general frame. Furthermore, this definition of the distribution 

function only has a sense inside an integral over k (such as in Eq. (1)). Accordingly, in the present 

paper, as soon as possible, equations will make use of g, which defines a measure on the spaces of k-

values and that can be written in terms of Heaviside function as shown in Eq. (3), rather than f. 

Nevertheless, as this notation is usual in gas radiation, we will make use of  k    in the paper. 

Consequently, all spectral bands must be understood as the restrictions of the intervals over which 

 k   is mathematically defined. As the number of minima and maxima of the absorption 

coefficient are always finite inside a spectral interval, the values of the spectral integrals are not 

changed if we consider the full band or those restricted sets of wavenumbers.  

k-distribution approaches can be extended to non-uniform media by assuming  “ideal” behaviours 

of the variations of the absorption coefficient with respect to the thermophysical conditions. The most 

widely used assumptions are called the scaling and correlation approximations [14]. They are briefly 

described in the next section. 

3.  Multidimensional k-distribution methods in non-uniform media 

3.1.  Preliminary comments 

In this section, we introduce the method proposed to extend k-distribution approaches used in uniform 

media to non-uniform ones. The technique is detailed in a simple case where the path is discretized in 

two uniform sub-paths in distinct thermophysical states. The approach is then extended to the general 

case where the non-uniform path can be divided into n  homogeneous isothermal elements. 

Furthermore, the only kind of path non-uniformity considered here will be due to temperature. This is 

not a limitation of the method, as it can also be applied when gradients of composition or pressure are 

encountered along the path, but this assumption is made to simplify the notations. 

Only spectral narrow bands will be considered in this work. 

3.2.  Exact treatment of spectral correlation effects 

Let us consider a narrow spectral interval   that:  1/ is narrow enough to assume that the Planck 

function remains constant, 2/ do not contain any transparency region of the gas at any temperature (this 

means that    min max  0, T T ,T , T        where minT  and maxT  represent the minimum and 

maximum temperatures encountered along the non-uniform path). 

Over band  , it is possible to exhibit relationship between absorption coefficients  1T  and 

 2T  at two distinct temperatures, 1 2T T  arbitrarily chosen inside the interval  min maxT ,T , by 

plotting one of them (for instance  2T ) as a function of the other one (in this case  1T ). This 
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approach provides a 2-dimensional parametric curve    1 1 2 2 k T , k T     in the (k1, k2)-plane, that 

will be subsequently referred to as the C curve. This curve can be interpreted in the following way: 

- If C is a straight line 
2 1k U k   with 0U  , then for any wavenumber    we have 

   2 1T U T    , and then the two absorption coefficients are called scaled. 

- If C is a function  2 1k F k , then for any value of   , we have    2 1T F T       and 

the two absorption coefficients are correlated. It should be noticed that in the literature on gas 

radiation, the concept of correlation usually involved is more restrictive since it assumes F to 

be strictly monotonous [1]. 

In other cases, no conclusion about correlation can be made: generally, when absorption 

coefficients associated to two distinct temperatures are plotted as a function of each other, none of the 

two previous situations (viz. scaling or correlation) is rigorously encountered.  

To illustrate this fact, we consider the two spectra plotted in figure 1. They correspond to two 

absorption coefficients given by the Elsasser model (infinite array of regularly spaced identical 

Lorentz lines). As those absorption coefficients are assumed to be associated to distinct 

thermophysical states, spectra in figure 1 were obtained by using distinct values of the Half Widths at 

Half Maximum (HWHM) of the Lorentz profiles (to account for the effect of pressure, composition 

and temperature changes between the two states) as well as of the line intensity (known to be strongly 

temperature dependent). Furthermore, the distance between lines was chosen distinct in the two spectra 

to account for the possible appearance of “hot” lines. The corresponding parametric curve C, based on 

the previous absorption coefficients, is shown in figure 2.  

 

Figure 1. Elsasser model of absorption coefficients at two distinct 

thermophysical states. 

 

Eurotherm Conference 105: Computational Thermal Radiation in Participating Media V IOP Publishing
Journal of Physics: Conference Series 676 (2016) 012001 doi:10.1088/1742-6596/676/1/012001

4



 

 

 

 

 

 

 

Figure 2. Parametric curve C for the two absorption spectra depicted in figure 1. 

Our objective is to calculate the mean value of some continuous real valued function F of both 

 1T  and  2T  averaged over band  : 

    1 2

1
 F F T , T d

 



  






      (6) 

As  1T  and  2T  are neither scaled nor correlated, it is not easy to suggest a simple method to 

handle the calculation of this integral. One possible technique is described below. 

Let us introduce two straight lines, that will be called 
UD  and 

VD , whose equations are given 

respectively as 
2 1k U k   and 

2 1k V k   with 0V U  (see figure 2). Any point on curve C with 

coordinates     1 1 2 2 k T , k T     located between 
UD  and 

VD   is such that: 

    2 1U T T V     (7) 

or equivalently: 

  1 2U u T ,T V   (8) 

where we define the function      1 2 2 1u T ,T T T     to represent the spectral scaling function 

between the two absorption spectra. 

The fraction of the interval   for which Eqs. (7,8) are satisfied is: 

 
 

 1 2

1
    

V

U

U ,V
u u T ,T d du




 

 


   
        

   (9) 

and the mean value of function F over the same set of wavenumbers is given as: 
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 

 
     1 2 1 2

1
       

V
U ,V

U

F u u T ,T F T , T d du
U ,V



  



   






  
          

   (10) 

Since variables   and u  are independent, the following (purely formal) equality:  

              1 2 1 1 1 2 1 2 1 1     u u T ,T F T , T u T ,T d u u T ,T F T ,u T d      

 

       
 

                   

  (11) 

enables to write Eq. (10) as: 

  

 
     1 2 1 1

1
      

V
U ,V

U

F u u T ,T F T ,u T du d
U ,V



  



   






  
            

   (12) 

Now, we observe that:  

  
0

lim
U
V

U ,V 



    (13) 

Eq. (13) simply means that when 0U  , then 
UD  approaches the k1-axis, and if V  , then 

VD  

approaches the k2-axis. In this case, the domain between the two lines covers the first quarter of the 

real plane, to which any value of  1T  and  2T  belong. 

Using Eq. (13), we can then conclude that: 

 
       1 2 1 1

0
0

1
lim  

U ,V

U
V

F F u u T ,T F T ,u T du d
 

  



   



 




  
             

   (14) 

The previous equation can also be written by using the property of the Delta function given by Eq. (5) 

that provides        1 1 1

0

   F T ,u T k T F k,u k dk     


          : 

      1 2 1

0 0

1
         F u u T ,T k T d F k,u k dk du

 



   


 





  
            

    (15) 

Eq. (15) can then be reformulated using the change of variables 
1 2 k k, k u k   . Indeed, the Jacobian 

corresponding to this change of variable is k (which is strictly positive, as assumed in section 3.2) and, 

using Eq. (21) page 53 from Ref. [13], we can write formally here: 

       1 2 1 1 1 2 2u u T ,T k T k k T k T                               . This provides 

       1 1 2 2 1 2 1 2

0 0

1
          F k T k T d F k ,k dk dk

 



    


 





  
           

    (16) 

This equation generalizes the usual k-distribution approach given by Eq. (1) to non-uniform media. 

Indeed, the previous relation can be written as: 

    1 2 1 2

0 0

     F F k ,k dg k ,k
 

      (17) 

in which we have introduced the 2-dimensional cumulated k-distribution: 
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      1 2 1 1 2 2

1
    g k ,k H k T H k T d 



  




            (18) 

It should be noticed that, as in the case of k-distribution methods for uniform media, using distribution 

 1 2g k ,k  provides an exact value of the spectral average of    1 2F T , T      over  . Now, let us 

consider the particular case: 

        1 2 1 1 1 1 2 2 2 2  F T , T exp x P T L x P T L                (19) 

where 
1L  and 

2L  are the lengths of two uniform columns at temperature 
1T  and 

2T , compositions 

 1 2ix , i ,  and total pressures  1 2iP , i ,  respectively.  F  represents in this case the band averaged 

transmission function  L   of a non-uniform path 
1 2L L L  . Application of Eq. (17) to this 

function enables to calculate exactly the transmissivity of the non-uniform path. 

Furthermore, Eq. (17) remains exact not only for this non-uniform case but also for uniform 

situations (at temperature 
1T  or 

2T  that are particular cases of Eq. (17) with 
1L  = 0 or 

2L  = 0). In fact, 

in these situations, Eq. (17) simplifies to the usual k-distribution model. Additionally, it is worth 

noticing that the exactness of the approach does not rely on assumptions of scaling or correlation about 

gas spectra, which are known to be the main source of error for the application of k-distribution 

techniques in non-uniform media.  

The simple process that we have described in this section for the treatment of a non-uniform gas 

path at two distinct temperatures can be readily applied to real gas spectra (instead of the Elsasser 

model, as considered previously). An example of the parametric curve C in a real case is given in 

figure 3. It corresponds to two spectra of 
2H O  over the [3287.5 ; 3292.5] cm

-1
 spectral interval for T1 

= 300 K and T2 = 2,300 K – additional details about the LBL data used for the curve are given in the 

caption to figure 3.  

 
Figure 3. Parametric curve C representing  2T  as a function of  1T  for H2O at T1 = 300 K 

and T2 = 2,300 K – 10% of H2O with 90% N2 – values of   are considered over the  

[3287.5 ; 3292.5] cm
-1

 spectral interval.  
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Clearly, since curve C is not monotonous, the two spectra are neither scaled nor correlated. Notice 

that in log-log scales, as used on this figure, lines DU and DV are parallel with a slope of 1. The 

constant distance between DU and DV is  ln V U . 

The approach can also be generalized to calculate band averaged values of functions F of any set of 

distinct temperatures  1 2 nT ,T ,..,T  where n  is the number of isothermal sub-layers encountered along 

the non-uniform path. The method is then fundamentally the same as the one given in this section (but 

then parametric curves C in dimensions higher than 2 have to be considered). This provides, as a 

generalization of Eqs. (17,18): 

 

     

   

1 2

1 2 1 2

0 0 0

 integrals

1
  

   

n

n n n

n

F F T , T ,.., T d

... F k ,k ,..,k dg k ,k ,..,k



  



   






  

   





  
 (20) 

where the n-dimensional cumulated k-distribution is defined as: 

        1 2 1 1 2 2

1
    n n n ng k ,k ,..,k H k T H k T ... H k T d  



   




                (21) 

Eq. (20) can also be written in a simpler form by introducing the vector  1 2

n

nk , k , .., k  k : 

     
n

nF F dg







 
k

k k  (22) 

together with the following notations: 

    1 2n n ng g k ,k ,..,kk  (23-a) 

    1 2 nF F k ,k ,..,kk  (23-b) 

One of the main advantages of the last formulation is that it is formally the same as encountered in 

usual k-distribution approaches. Eq. (22) may also be extended from discrete to continuous 

temperature distributions along a non-uniform path using a functional integral form as shown in 

Appendix. 

Finally, the presented method is not restricted to non-uniformities in terms of temperature but can 

also be applied in cases of gradients of pressure or species concentrations. This enables to write 

formally Eq. (21) in a more general form: 

        1 2 1 1 2 2

1
    n n n ng k ,k ,..,k H k H k ... H k d  



      




        
        (24) 

where  1i , i ,..,n   represent the state vectors whose components are the gas temperatures, total 

pressures, and species concentration encountered along the non-uniform path.  

4.  The Multi-Spectral Framework (MSF). 

4.1.  Principle of the MSF 

One of the main problems for the application of Eq. (22) for radiative heat transfer is that it requires to 

estimate the multidimensional cumulative k-distribution    1 2n ng g k ,k ,..,kk , which can be 

computationally expensive if n  is large. However, this approach can be considered in some cases (see 
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for instance Ref. [7], in which a similar process is applied in the context of radiative transfer in the 

atmosphere). Nevertheless, a more efficient method is required for most engineering applications. One 

of them is the so-called Multi-Spectral Framework (MSF) introduced in Ref. [8]. It is out of the scope 

of the present work to provide a comprehensive description of this approach, and more detail can be 

found in Ref. [8]. 

In the MSF, the first step is to consider a particular case of Eq. (22) in which temperatures 

 1 nT ,..,T are chosen distinct and regularly spaced between 
minT  and 

maxT : 
min 1 2 maxnT T T ... T T     . 

In the second step, it is assumed that it is possible to define P  distinct and linearly independent 

continuous scaling functions    1pu T , p ,..,P  such that for any wavenumber   , one can find an 

integer  1p ,..,P  such that: 

        1   ref

i p ii ,..,n , T T u T      (25) 

where 
refT  represents a reference temperature, chosen arbitrarily inside the interval  min maxT ,T . Here, 

we choose the reference temperature 
1

refT T , that implies:  1 1pu T  . Eq. (25) allows definition of 

P  spectral subintervals    
1

 1 : p p

p ,P

u , p ,..,P u  


      that can be used to discretize Eq. (22) 

into: 

       
1

1
 

n

P

p n,p

p

F u F dg 






 

  

 

k

k k  (26) 

where, as a direct application of Eq. (21): 

  
 

     
 

1 1 2 2

1
    

p

n,p n n

p u

g H k T H k T ... H k T d
u

  



   




             


k  (27) 

and where  pu  is the width of the spectral interval set by Eq. (25). 

It can be noticed that it is always possible to define such a finite set of scaling functions because in 

practice LBL data are calculated at limited resolution (which means that inside an interval, the number 

N of spectral values of the absorption coefficient is finite and the number of distinct scaling functions 

is utmost equal to N). Then, the third step consists in using the definition of the scaling functions given 

by Eq. (25) inside Eq. (27) to set: 

 
 

         
 

1 2 2

1
    

p

ref ref ref

n,p p n p n

p u

g H k T H k T u T ... H k T u T d
u

  



   




          
     

k

  (28) 

It can be shown (see Eq. (27) in Ref. [8]) that Eq. (28) simplifies into: 

  
 

 
 

 1 1

1
   

p

ref ref

n,p p

p u

g H k T d g k ,T
u





 




   
 

k  (29) 

where  1

ref

pg k ,T  is the distribution of k-values at the reference temperature 
1

refT T  inside the 

interval  pu . 

Accordingly, Eq. (26) can be written in a very simple form (see Eq. (26) in Ref. [8]): 

        1 1 2 1 1

1 0

1
   

P
ref

p p p n p

p

F u F k ,k u T ,..,k u T dg k ,T 








     
   (30) 
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The application of the MSF thus reduces the calculation of a multidimensional k-distribution to a 

weighted sum of usual ones. Furthermore, for any spectrum of the gas at a temperature  min maxT T ,T , 

it is possible to approximate  T  over any spectral interval    1pu , p ,..,P   as: 

        1  p pT T u T , u        (31) 

This provides, for instance for the transmission function of the gas at temperature T : 

          1 1

1 0

1 1
         

P
ref

p p p

p

L exp xP T L d u exp xP k u T L dg k ,T





   
 







           
 

  (32) 

Obviously, this approach can also be extended to non-uniform paths.  

The main difficulty for the application of the previous equations is the definition of the set of scaling 

functions    1pu T , p ,..,P . This point is raised in the next section. 

4.2.  Application of a functional clustering technique to define    1pu , p ,..,P   

Let us consider an arbitrary integer   1p ,..,P  and two arbitrary distinct wavenumbers 

 1 2 p, u   . Following the definition of intervals  pu (see Eq. (25)), we have: 

            
max max

1 2 1 2

min min

2

1 2

T T

ref ref

p

T T

C , T T dT T T u T dT                (33) 

and: 

             
max max max

1 2 1 2

min min min

2

22 2 2

1 1 2 2

T T T

ref ref

p

T T T

C , C , T dT T dT T T u T dT          
                 
  

    (34) 

that shows that: 

 
 

   

1 2

1 2

1 1 2 2

1
C ,

C , C ,

 

   


  

 (35) 

Similarly, if the two wavenumbers are chosen in distinct spectral intervals  pu  and 

   pu , p p 
   then, according to the Cauchy-Schwartz inequality [15]: 

 
 

   

   

   

max

min

max max

min min

1 2

1 2 1 2 1 2

2 21 1 2 2

0 1

T

p p

T

T T

p p

T T

u T u T dT
C ,

C , C ,
u T dT u T dT

 

   





  
         

         
      



 

 (36) 

Consequently, the two criteria set by Eqs. (35,36) can be used to group together the wavenumbers that 

have the same scaling functions and thus to determine the spectral intervals  pu . This process is 

usually referred to as Functional Data Clustering [16], which is a part of more general Functional Data 

Analysis (FDA) [17].  
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FDA is a relatively new area of mathematical science whose aim is to extend the usual techniques 

encountered for Multivariate Statistical Analysis (MSA) of data (such as clustering techniques for 

instance) to functions. The steps for Functional Data Clustering are [18]: 

1/ Propose a functional form for the data. 

2/ Estimate the parameters that provide the best estimate of the data using the functional form 

chosen in the previous step. 

3/ Calculate a similarity (see Eq. (35)) or a distance between functions based on integrals (and 

not in terms of distances between points, which is the most significant difference between 

FDA and MSA). 

4/ Apply usual techniques encountered in MSA (such as clustering, principal component 

analysis, etc) using the coefficients of similarities (or distances) obtained at the previous stage 

to build groups (here spectral intervals) associated to similar functions.  

Table 1 summarizes the two functional forms of the scaling function (step 1) considered in this 

work. The first one was used previously in Ref. [8]. It can be shown that the two formulas given in the 

third column converge toward their exact value (see Eq. (37)) when 
1i iT T  . 

 

 

Table 1. Functional forms used for the definition of the similarity coefficient required in the 

clustering process and associated cross-correlation coefficients over    1 1 i i i nT ,T , T T ,..,T  .  

   

Functional 

Form 

Approximation of 

   ln iu T u T 
    

over an interval 

 1i iT ,T 
, 

  is a coefficient 

 1 1 2i ,iC , 
 (see Eq. (37)) 

Spectral scaling functions     = 1,2
j

u T , j  are defined here as: 

     
max

min

1 2

2

j j j

T

T

u T T T dT   



       
  
  

 

 

FF1 

 

 iT T   

 

       

       
 1 2 1 2

1 2 1 2

1 1

1

1 1ln ln

i i i i

i i

i i i i

u T u T u T u T
T T

u T u T u T u T

   

   

 



 




      

 

 

 

 

FF2 

 

 

  ln iT T  

 

       

 

1 2

1 2

1 2

1

1
1

1

ln
1  

1 ln

j j

j

i ii i i i

i i i

u T u Tu T u T T T
,

T T T

  
  



 


 

 






        
     

 

   

 

The third column in table 1 enables to calculate the correlation coefficients that appear in 

Eqs. (35,36) as (for instance for  1 2C ,  , and omitting the product    
1 2

ref refT T    for 

simplicity): 

             
max 1

1 2 1 2

min

1 1

1 2 1 1 2

1 1

 
i

i

T Tn n

i ,i

i iT T

C , u T u T dT u T u T dT C ,      
 



 

 
   

  
     (37) 
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Those coefficients can be used in Eqs. (35,36) to evaluate the similarity (in terms of scaling functions) 

between any couple of wavenumbers. The wavenumbers associated to the highest values of this 

coefficient can then be grouped into clusters (here we have used a hierarchical clustering based on an 

average linkage scheme [16] – this method was shown in Ref. [19] to be well suited for the clustering 

of functional data). Once clusters are built, we have groups of wavenumbers that share similar scaling 

functions. The width  pu  of the corresponding spectral interval can be estimated as 

   p pu N    where 
pN  represents the number of elements in the p-th cluster (the one associated 

to the p-th scaling function  pu T ) and   is the distance (assumed constant over  ) between two 

successive values of the absorption coefficients in the LBL dataset.  

4.3.  Approximate treatment of non-uniformities over clusters 

Following the method described in the previous subsection to build spectral intervals 

   1pu , p ,..,P  , the most natural way to evaluate the radiative properties of the gas over each 

cluster of wavenumbers is by using a Scaled-k approach. The main problem is that over those clusters, 

absorption coefficients are not rigorously scaled, but only share similar behaviors (in other words, the 

application of a clustering technique only ensures that the elements that are inside a same cluster are 

more similar with respect to the coefficients given by Eqs. (35,36) than those that are outside this 

cluster). This is shown in figure 4. As a consequence, functions      '

p p pû u T u x,P   , where 

 pû   represents the scaling function between states ref  and   and  '

pu x,P  is the part of the 

function related to composition and pressure, cannot be defined explicitly but only implicitly as a 

solution of the following implicit equation [14] (over each interval  pu ): 

        
0 0

     ref ref ref ref ref

p p p
ˆexp xPkL dg k, exp x P k L u dg k ,  

 

   
    (38) 

where  pg k,  is the cumulative distribution of values of k in the thermophysical state 

     x, P, T   over the interval  pu  and 
ref  represents a prescribed reference thermophysical 

state. It can be shown easily that the previous equation does not provide a solution that only changes 

with the thermophysical state of the gas but that it also depends on the length of the path considered in 

Eq. (38). This means that this equation needs to be solved iteratively along the propagation of the 

radiation inside the gaseous medium, which is not convenient for applications in radiative heat 

transfer. 

In order to circumvent this difficulty, we notice that as over clusters absorption coefficients are 

mostly linearly correlated, the use of the correlation assumption is here justified. Accordingly, instead 

of equation (38), we define, for convenience, the absorption coefficient  k   in any state   as a 

solution of the well known correlation equation [1], whose application is fully justified here because 

the correlating function is strictly increasing (since   0pû   ): 

    ref ref

p pg k, g k ,   (39) 

Using this method, the local absorption coefficients can be calculated once and then stored in 

tables. Other practical advantages of this treatment are that it allows: 1/  the use of the approach in all 

existing codes based on the Correlated-k approach, with only minor modifications, 2/ the building of 

the clusters for a single reference composition and pressure. The correlation assumption then deals 

with variations of composition and pressure along heterogeneous paths. 
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Figure 4. Examples of spectral scaling function for H2O over the [3287.5 ; 3312.5] cm
-1

 spectral 

interval. Clusters were obtained with the functional form FF2.  

Following Eqs. (32,38), on which the MSF is based, it is clear that the present approach shares many 

similarities with other existing models. In fact, any number of scaling functions can be used in 

Eq. (32). Let us thus consider a LBL spectrum calculated at high resolution and write N the number of 

points for which the absorption coefficient was evaluated inside  . Several cases can be considered: 

- If P N , then MSF model and LBL calculation are rigorously the same. 

- If 1P  , then the combination of Eqs. (32,38) provides the so-called scaled-k model [14]. 

- If scaling functions are built in such a way that they associate the same value of  pû   to all 

the wavenumbers that correspond to a given value kp  of the absorption coefficient in the 

reference state, viz.:          if ref ref

p p p p
ˆk u u k ,             , then we define a 

relationship between the gas spectra in the two states that can be written in the following form:  

       ref ref

p pu k , h           
 

 where h is a function that correlates explicitly the 

values of the absorption coefficients in the two states: this provides exactly the correlated-k 

model [14]. However, no restriction about the behavior, monotonous or not, of the correlating 

function is then introduced.  

- Theoretical links between MS and Fictitious gas approaches are discussed in Appendix. 

- If sub-spectral intervals are built by grouping together wavenumbers associated to similar 

scaling functions, then: 1/ if scaling functions are defined explicitly by a given prescribed 

functional form, MSF provides the so-called multi-group approach described in Refs. [20,21] 

when the same basis of functions as proposed in these references are used, 2/ if those scaling 

functions are defined implicitly, viz. without explicit functional form but in terms of their 

overall behavior (ie. increase or decrease over the whole set of thermophysical states, or 

increase and then decrease, etc), the MSF provides the multi-group approach described in 

Refs. [22,23]. 

- If 1P   and if we assume that the k-distribution function is Inverse Gaussian, we finally end 

up with the SNB Malkmus’ model together with the Curtis-Godson approximation (this can be 

readily shown by considering the solutions of Eq. (38) for the scaling function at the optically 

thin and thick limits, that provide in this case analytical solutions, and then by reporting the 

results inside Eq. (32) written over a non-uniform path). 
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In other words, the set of Eqs. (32,38) provides the most general approximate model for gas radiation 

in non-uniform media. All existing models can thus be obtained by different ways to approximate the 

exact formula set by Eqs. (20,22). 

5.  Applications 

5.1.  Preliminary comments 

All results provided in this section correspond to mixtures of H2O and N2. Reference LBL spectra were 

calculated using the HITEMP2010 [24] spectroscopic database for 27 temperature values between 

Tmin = 300 K and Tmax = 2,900 K and molar fractions 
2H Ox  = 0.01, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0. The 

total pressure is 1 atm. More details about those calculations can be found in Ref. [25]. The only 

differences in the present work are that: 1/ total partition sums were calculated using the polynomial 

formulas given in Ref. [26], 2/ the distances from line centers for the estimation of Lorentz profiles 

were taken from Ref. [27], 3/ the data used for the calculation of the Lorentz HWHM of the spectral 

lines where those given in the HITEMP2010 database.  

Once LBL data are available, spectral groups (clusters) are built following the method described in 

section 4.2. (As said in section 4.3, clusters can be made using a reference pressure and composition. 

Here, values P
ref

 = 1 atm and 
2

ref

H Ox  = 0.1 were chosen). A detailed analysis of those sets of 

wavenumbers has shown that the clusters are mostly independent on the choice of the Functional Form 

FF1 or FF2. This was confirmed by several test cases (not given here) where the two models were 

found to provide results within ~0.1% on narrow band calculations. Accordingly, only the model based 

on FF2 will be considered here and will be referred to as MSCk. 

Four approximate models are considered for comparisons with LBL reference data: Ck-25, which is 

the usual narrow band Ck model averaged over 25 cm
-1

 spectral intervals [1]; Ck-1, the Ck model with 

data generated at 1 cm
-1

; MSCk with functional forms FF2 with p = 25 (distinct scaling functions); and 

k-Map (only for 0D test cases) viz. based on a direct application of Eqs. (20,21). To ensure fair 

comparison among the four models, results were averaged over 25 cm
-1

. Notice that Ck-1 and MSCk 

models share the same computational cost, but use different discretizations of the narrow bands.  

The building of those model parameters was done by using the same method as described in 

Ref. [8]. This approach requires defining a reference temperature. Here we have chosen T
ref

 = 2,900 K 

(this value, together with P
ref

 = 1 atm and 
2

ref

H Ox  = 0.1 chosen previously, defines our reference state). 

15 values of k
ref

 were used to discretize the interval 
min max

ref refk ,k   . Those minimum and maximum values 

of the absorption coefficient in the reference state were taken directly from the LBL dataset. Then, the 

corresponding values of absorption coefficient in all the other thermophysical states were obtained by 

solving Eq. (39). 

In the next section, 0D test cases only involve two distinct thermophysical states. Notice that for 

these cases, k-Map uses 15
2
 values of k. 1D calculations were performed using the semi-analytical 

method described in Ref. [28].  

5.2.  Examples of applications in 0D and 1D geometries 

To illustrate the validity of the various models considered in this work, we first consider two simple 

0D examples taken from Ref. [14]. In these cases, a slab of hot gas (at 1,000 K or 2,000 K) radiates 

through a cold slab at 300 K. Both layers have the same length (50 cm). The total pressure is 1 atm and 

the molar fractions of H2O (
2H Ox = 0.2) are the same in both slabs. Results, in terms of emissivities as 

defined by Modest in Ref. [14], are depicted in figure 5 (Th = 1,000 K) and figure 6 (Th = 2,000 K). 

The Ck-25 model provides in both cases the worst results, with errors that reach 55% when compared 

to the reference LBL data. Those results are consistent with those reported in Ref. [14]. The Ck-1 

model is more accurate, but errors up to 20% are observed. Significant improvements can be obtained 

with the MSCk and k-Map models for which errors do not exceed 4.2% for MSCk and 2.2% for k-Map 

in the worst cases. The k-Map approach is slightly more accurate than MSCk with a band averaged 
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(over the 1000-2500 cm
-1

 spectral interval) error that is lower than 0.11%, compared to an error of up 

to 1.2% for MSCk. 

The third test case was taken from Ref. [3]. It corresponds to a 1D triangular temperature profile: 

the temperature is constant and equal to the wall temperature Tw=500 K except at the centre of the 

domain where it increases up to 2,500 K inside a layer of width 10 cm. The gas is homogeneous            

(
2H Ox  = 0.1) and the total pressure is 1 atm. Results for this case, which are provided in terms of the 

total net flux as a function of the distance between the walls, are depicted in figure 7. Again, the MSCk 

model clearly outperforms more conventional Ck approaches. Furthermore, if we compare the order of 

magnitude of the errors on wall fluxes obtained here with those given in Ref. [3] (see figure 7 in this 

reference), it appears that the MSCk and Fictitious Gases (FG) approaches provide in this case very 

similar accuracies. This is not really surprising because, as shown for instance in Appendix, FG and 

MS techniques share many similarities. Nevertheless, one of the advantages of MSCk over CKFG is 

that CKFG approach is usually applied in terms of transmissivity (when formulated in terms of 

absorption coefficients, its computational cost is higher than a LBL calculation).  Therefore, it cannot 

be used when the gas is surrounded by reflecting walls [3]. The MSCk method, on the other hand, does 

not suffer from the same possible source of error because, over clusters, the gas radiation model 

reduces to a usual correlated-k model, known to be applicable with non-black boundaries. 

Furthermore, for the same reason, MSCk can be applied in uniform media without any loss of 

accuracy, which may not be the case with the CKFG model (see for instance [3]).  

 

Figure 5. Narrow band emissivities for the 6.3 µm band of H2O calculated by the LBL (top) method 

and errors due to the use of Ck-25, Ck-1, MSCk and k-Map approximate models. Th = 1,000 K. 
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Figure 6. Narrow band emissivities for the 6.3 µm band of H2O calculated by the LBL (top) method 

and errors due to the use of Ck-25, Ck-1, MSCk and k-Map approximate models. Th = 2,000 K. 

 

Figure 7. Wall net flux for a triangular temperature profile (from Ref. [3]) – the gas (H2O-N2 mixture, 

2H Ox  = 0.1, P = 1 atm) is surrounded by cold black walls at 500 K. Top: wall net flux calculated LBL, 

bottom: relative difference between model and LBL calculations. The hot layer thickness is 10 cm. 
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6.  Conclusion 

A general formula for the application of k-distribution approaches in non-uniform gaseous media was 

proposed, together with a simpler and computationally more efficient technique (based on the so-

called Multi-Spectral Framework (MSF)) to allow its application in radiative heat transfer.  Both 

models (the exact approach called k-Map, and its approximation, MSCk) were assessed against LBL 

reference data for H2O-N2 mixtures in 0D geometries. For 1D geometries, the exact approach cannot 

be recommended due to its computational cost, and in this case the use of the MSCk model is 

appropriate. Those two approaches were found to outperform usual k-distribution techniques in several 

test cases taken from the literature. Further developments, planned as future work, are still required to 

optimize the MSCk model (in terms of the number of values of k required for the calculation of k-

integrals, and in terms of the optimal number of clusters) for application in radiative heat transfer. The 

application of the proposed method over the full spectrum will also be studied. 
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Appendix. Functional k-distribution formulation  

We consider a narrow band  . Over this interval, the spectral absorption coefficient is the sum of the 

contributions of 
lN  spectral lines (whose centers may be inside or outside  ). Each line corresponds 

to a radiative transition between two energy states of the molecules. Let us write 
lE  the lowest value 

of energy for the l-th spectral line. It is possible to assemble the spectral lines into N groups 

(equivalent to fictitious gases) with the same value of parameter 
lE . If all spectral lines are associated 

to distinct values of 
lE , then 

lN N . More generally, 
lN N . 

Let us assume that for any wavenumber    , the spectral absorption coefficient of the gas in a 

thermophysical state given by the state vector   (temperature T, composition x and total pressure P) 

can be written as the sum of N  scaled spectra, viz. 

              1 1 2 2

ref ref ref

, , ,N Ne e ... e                       (A.1) 

where 
ref represents a reference state and  ,  1,..,ie i N   the scaling functions. The corresponding 

temperature, 
refT , is chosen here equal to 

minT . 

This statement is equivalent to assume that the profiles associated to the spectral lines that appear in 

the spectrum (that are here assumed to be Lorentzian) are scaled. This approximation was used in 

Ref. [6] to introduce the Fictitious gases approach. It was justified as follows: at low resolution, line-

wings have a more important impact that line centers. Accordingly one can assume, as a first 

approximation, that line profiles are scaled viz.  

 

 
 

   

 
 

 
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 
 

 

   

 
 
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2 22 2

2 2

1 1

1

ref

L L L

L l ref

L
L l L l

ref

L L

ref
ref

L
L l

L ref

L lref

L

f ,

f ,

     
  

         

   

     

 
  

 

  
      
   


   
 

 

 (A.2) 
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where 
l  is the center of the l-th line, 

L  the half-width at half-maximum of the Lorentz profile 

assumed to be the same for all spectral lines, 
Lf  the Lorentz profile and   the state vector as defined 

previously. 
L  is usually (see for instance Ref. [29]) estimated as the product of a function of 

temperature,  L,T T , and a function of composition,  L,c x,P : 

       L L,T L,cT x,P     (A.3) 

Furthermore, we assume that: 1/ all spectral lines share the same partition function  Q T , 2/ all terms 

of the form  1 l Bexp hc k T   (that appear in the calculation of linestrengths) can be approximated 

as   1 Bexp hc k T   where   represents the band center and 
Bk  is the Boltzman’s constant. Then 

we can write functions    1ie , i ,..,N   explicitly: 

 

 
 

 
 
 

 

 

 
 

 

 
   

       

1 1 1

1

iT c

ref ref
B L,T L,c i

i refref ref ref ref
BB L,T L,c

e Tv T G T G x,P

T c i

Q Texp hc k T T x,P ET
e exp

Q T T k T Texp hc k T T x ,P

v T G T G x,P e T

  


  

    
     

    

   

(A.4) 

As     0Tv T G T   , it is possible to reformulate Eq. (A.1) into: 

 

 
 
   

     

 
   

           1 1 2 2

ref ref

T c

T

ref ref

ref ref ref

, , ,N N

T

x ,P ,T
v T G T G x,P

v T G T

x ,P ,T
e T e T ... e T

v T G T







  


 


     


   




      


 (A.5) 

where: 

  
1 1i

i ref

B

E
e T exp

k T T

  
    

  
 (A.6) 

In Eq. (A.5),  ref refx ,P ,T  represents the spectral absorption coefficient at temperature T, 

composition x
ref

 and total pressure P
ref

. 

Now, let us consider the set of temperature 1jT , j ,..,N  defined as: 

 
max min

1 1 1 1 1

1ref

j

j

T T N T T

 
   

  
 (A.7) 

We can then use (A.5) to set the linear system of equations:  

 
1  J J 

   k K K k   (A.8) 

where k  and K  are the vectors of components        ref ref

i i T ii
x ,P ,T v T G T   k  and  

   ref

,ii  K  respectively. J  is a N  by N  square  invertible matrix (with the set of temperatures 

given by Eq. (A.7), this matrix is of the Vandermonde type which is here invertible because all 
iE ’s 

are distinct). Mathematically, Eq. (A.8) represents a change of basis and J
 is the corresponding 
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Jacobian matrix whose coefficients are:  
     

 
 

ref ref

i i T i

j iij ref

, j

x ,P ,T v T G T
J e T







 


 
 

 


 . In this 

case, the set    1 Ne T ,..,e T  defines a basis of a space  1 NH e ,..,e  of functions  f T  over the interval 

 min maxT T ,T : 

  

 

         

min max

1

1

1

functions  such that

  
N

N N

T j j N

j

: T ,T

H e ,..,e
T v T G T a e T , a ,..,a



  
 

  
    
 


 (A.9) 

Now, using Eq. (A.5), the band averaged transmission function of a path of length L inside the gas 

in any thermophysical condition   can be written as the multiple integral: 

               1 1 1

0 0 0

 integrals

 exp   T c N N N N

N

L ... xP v T G T G x,P K e T ... K e T L dg K ,..,K
  

           

  (A.10) 

where: 

      1 1 1

1
    ref ref

N N , N ,Ng K ,..,K H K ... H K d 



    




     
      (A.11) 

Let us write 
ij  the elements of the inverse of matrix J

: 1

ijij
J 


    . 

We have, following (A.8): 
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E E

 (A.12) 

and, formally, from Ref. [13]: 
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   (A.13-a) 

where: 
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This yields: 
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               1 1 1

0 0 0

 integrals

 exp    v

T c N N N N
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L ... xPL v T G T G x,P k T ... k T dg k ,..,k
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            E E

  (A.14) 

Accordingly, formulas (A.10) and (A.14) are rigorously equivalent. They can be both written formally 

in functional integral forms (so as to simplify the notations): 
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 (A.15) 

where    1N NdW T dg K ,..,K    ,    1

v

N Ndw T dg k ,..,k     and where we define the following 

space of functions: 
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 (A.16) 

In Eq. (A.15),    1  N NdW T dg K ,..,K    defines a measure on the space of functions 

 1 NH e ,..,e . Similarly,    1

v

N Ndw T dg k ,..,k     is a measure on  1 NH ,..,E E . Eq. (A.15) can be 

compared to the more usual formulas Eqs. (1,2). That becomes what can be called a functional k-

distribution formulation. 

Formulas (A.15) can be obviously extended to non-uniform media. Nevertheless, those 

formulations do not have (a priori) a real benefit over Eq. (20) for applications in radiative heat 

transfer. Indeed, most problems are typically formulated in terms of discretized temperature fields (viz. 

values of temperatures at discrete points sampled through a mesh). In those applications, Eq. (20) 

provides the exact solution. Nevertheless, this formulation is interesting from a fundamental point of 

view because: 

- it noticeably exhibits the links that exist between k-distributions in non-uniform media and 

functional data concepts and methods (such as FDA), as used in the multispectral approach. 

- it clearly shows that LBL and Fictitious gas methods (which are mainly founded on the first 

integral formulation in Eq. (A.15)) and mapping techniques (based on the second formula in 

the same set of equations) are rigorously equivalent. 

Finally, it should be noticed that the problem usually encountered for the definition of a measure in 

functional or path integration (see for instance the discussion pages 4-5 in Ref. [30] - the same 

problem is found in Functional Data Analysis, [31]) is avoided here because the spaces of functions 

considered for the calculation of the integrals are of finite dimensions N  (that represents the number 

of spectra that can be associated to distinct values of 
iE  that one can find in the spectroscopic database 

- this number is always finite). Over those spaces, a measure can be defined in terms of the 

components of any function in the basis    1 Ne T ,..,e T  or    1 NT ,.., TE E . This may not be the case 

in a general frame [32]. 
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