This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

The ATLAS Event Service: A new approach to event processing

, , , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation P Calafiura et al 2015 J. Phys.: Conf. Ser. 664 062065 DOI 10.1088/1742-6596/664/6/062065

1742-6596/664/6/062065

Abstract

The ATLAS Event Service (ES) implements a new fine grained approach to HEP event processing, designed to be agile and efficient in exploiting transient, short-lived resources such as HPC hole-filling, spot market commercial clouds, and volunteer computing. Input and output control and data flows, bookkeeping, monitoring, and data storage are all managed at the event level in an implementation capable of supporting ATLAS-scale distributed processing throughputs (about 4M CPU-hours/day). Input data flows utilize remote data repositories with no data locality or pre-staging requirements, minimizing the use of costly storage in favor of strongly leveraging powerful networks. Object stores provide a highly scalable means of remotely storing the quasi-continuous, fine grained outputs that give ES based applications a very light data footprint on a processing resource, and ensure negligible losses should the resource suddenly vanish. We will describe the motivations for the ES system, its unique features and capabilities, its architecture and the highly scalable tools and technologies employed in its implementation, and its applications in ATLAS processing on HPCs, commercial cloud resources, volunteer computing, and grid resources.

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.