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Abstract. Data fitting and model selection lie at the very heart of the scientific method, and
these tasks are often tackled via the use of popular (and typically unquestioned) optimization
algorithms of limited validity or flexibility, e.g., least-squares methods. To circumvent these
limitations, this work introduces the implementation within the MANTID framework of robust
inference methods based on the Bayesian fitting algorithm FABADA. The power of this
new MANTID tool is illustrated by revisiting an overarching and recurring question in the
interpretation of quasielastic neutron scattering measurements, that is, how many spectral
components may (or may not) be justified by the available experimental data.

1. Introduction

Data fitting and model selection underpin much of what is done with scientific data, to verify
the adequacy of specific mathematical models and to obtain parameters that best describe
the underlying physical phenomena. The classical way of performing data fitting involves the
minimization of a so-called cost function (CF) such as the celebrated y2. For a given physical
model, popular algorithms such as Levenberg-Marquardt (LM) seek to minimize the CF in order
to find the parameter values (and associated uncertainties) that ‘best describe’ the data [1]. Some
of the limitations associated with these classical approaches have been previously discussed by
some of the authors [2, 3]. In brief, LM algorithms are successful when the x? is well behaved,
i.e., if no local minima are encountered in the search for the global minimum. Moreover, LM is
based on the assumption that the minimum is quadratic and that there is no correlation between
fit parameters beyond linear couplings. With these restrictions in mind, model selection is then
implemented on the basis of the value of the x? divided by a term that penalizes the addition of
extra model parameters, leading to a concomitant reduction in the overall number of degrees of
freedom. Such is the rationale behind the concept of a reduced-x? (X?"ed) CF, commonly defined
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Figure 1. (Color online) Snapshot of MANTID program where the minimizer FABADA has
been selected.

as X2y = x>+ (N —m —1)"', where N is the number of data points and m is the number of

fit parameters. Model selection based on Xq%ed is faced with three main drawbacks. In addition
to the primary assumptions of the LM method discussed above, parameter correlation leads to
an effective reduction in the number of real parameters. In the language of statistical analysis,
this added complication implies that the CF does not conform to the expected x? Probability
Density Function (PDF) [4]. Last but not least, reliance on a single number (the x?) is unlikely
to represent a general way of performing robust model selection.

Bayesian Inference Methods (BIMs) provide a suitable framework to address the above
limitations. First and foremost, BIMs do not rely on specific assumptions about the underlying
x? landscape or on putative (and typically unknown) correlations between model parameters.
In addition, jumps across local minima are possible [2] and the robustness of the results can
always be tested by increasing the (fictive) temperature associated with artificial increments in
data uncertainties [5]. Also, the interpretation and visualization of BIM results differ from the
more widespread frequentist point of view in a number of fundamental ways. In BIMs, PDFs are
obtained for each model parameter, as well as for the y2. Likewise, model-selection protocols
can be implemented in a systematic manner via direct inspection of the x> PDF. This approach
can immediately establish the mono- or multi-modal character of this function, and the position
of its most-probable value provides a suitable figure of merit for quantitative model selection.
Moreover, analysis of the PDFs makes it possible to assess the robustness of any criteria we
might have chosen to implement model selection. For example, if x> PDFs corresponding to
two different models display some overlap in x? space, this result immediately implies that there
exists a combination of parameters for one model which, given the available experimental data,
is necessarily as likely as the corresponding parameter set for the second (alternative) model.

In the present work, we introduce the first implementation of BIMs within the MANTID
framework [6, 7]. As a software package, MANTID is primarily aimed at the visualization and
analysis of neutron and muon data using modern software-engineering paradigms, as recently
illustrated in Refs. [8, 9, 10]. The added value of this new MANTID tool is illustrated by
considering its use in QuasiElastic Neutron Scattering (QENS) data analysis, superseding
previous BIMs [11, 12, 13]. The implementation has been done in the release 3.4 and has
been added as a new minimizer in the main menu of MANTID as it can be seen in figure 1.

2. A Closer Look Under the Hood: The FABADA Algorithm

Before describing the implementation of BIMs in MANTID, we provide a summary of the
underlying Fitting Algorithm for Bayesian Analysis of DAta, hereafter FABADA [3]. Bayes’
theorem relates the conditional probabilities between two events [4] and therefore provides the
starting point to calculate the likelihood that a given hypothesis is supported by the experimental
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data. This task may be accomplished by taking proper account of our prior state of knowledge
concerning the starting hypothesis as well as the likelihood that the experimental data are
described by the proposed hypothesis. In what follows, we assume no previous knowledge about
the hypothesis, a situation that amounts to assigning a constant probability to the prior.
Typically, neutron-scattering experiments rely on the acquisition of a given number of
neutron counts per channel. When count levels are high, the underlying Poisson distribution
describing experimental uncertainties becomes Gaussian, and the probaQbility that a given model
x{Pi}
2

is supported by the experimental data becomes proportional to exp (— ) . In this expression

x? is defined as usual, that is, as the quadratic sum of the deviation between data and model
weighted by uncertainties in the former (for more details, see Refs. [2, 3]). As expected, the
value of x? depends on the specific values of the model parameters. This condition can be made
explicit by writing x? { P;} where P; is used to denote the set of model parameters. FABADA, or
any other Markov Chain Monte Carlo (MCMC) method, changes one of the parameters in P; in
arandom manner, and accepts the change if the CF (x? in our case, or the energy in Monte Carlo
simulations) diminishes. Since there are errors associated with the data (or thermal agitation
in the case of a Monte Carlo simulation), there is also a non-zero probability to accept changes
in P; that nonetheless lead to an increase of the CF. In the case of data fitting, the probability
of accepting an increase in the CF can be written as

PHEPP)D] (a2
PIH(P)|D) “’(‘ 2 ld) o

where H(P“") denotes the hypothesis (model) described by the parameter set P** D
represents the experimental data, and P[H|D| denotes the conditional probability that
hypothesis H holds given D. This additional allowance for otherwise “illegal” moves that
increase the CF enables jumps over small barriers in the y? landscape. Higher barriers can also
be avoided by multiplying data uncertainties by a fictive temperature, as detailed in Refs. [2, 5].

The main limitation of the above algorithm is related to the extent one needs to change
parameter values so that the optimization process becomes equally sensitive to all of them.
To circumvent this difficulty, FABADA uses an adaptive MCMC scheme that avoids unwanted
bias to specific parameters. This method is best understood by considering a simple example.
Let us assume that a given parameter is changed by an amount A; following the prescription
Prew = pold 4 pA; where p is a random number. To make all parameters relevant during the
fitting procedure, FABADA changes the value of the step A; in an adaptive manner based on
the acceptance ratio. Parameters characterized by a low acceptance ratio would then be given
large values of A; so that changes in x? become large. This condition leads to large values of
ow — Xgld in Eq. (1) and low acceptance probabilities. The opposite happens to parameters
with a high acceptance ratio. Convergence implies that all parameters must be accepted with
equal probability, a condition that generally requires different values of A;. The specific values
of A; are also related to the curvature of the (multidimensional) x? PDF along the direction of
a given parameter and its associated error. A small value of A; implies a strong curvature and
a small error.

3. Bayesian Model Selection: How Many Lines Are There?

Falsifiability in science [14] usually operates via model selection. For this reason, understanding
the conceptual underpinnings of this process is an important exercise deserving careful thought
and consideration. One of the most widely used model-selection criteria is predicated upon the
notion that a given model is better than others because it provides a “better fit” to the available
data. This condition is only true when the number of parameters across models is the same
and all parameters remain uncorrelated, as correlation diminishes their effective number. In the
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Figure 2. (Color online) Synthetic QENS
spectrum to test model selection (black
circles). Note the Log-Lin representation
of these data. Green, red, and blue lines
have been used to depict three L modes
with spectral HWHMs 0.02, 0.2, and 1 meV,
respectively.
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Figure 3. (Color online) Fits to the synthetic
QENS data (black circles) using an increasing
number of L modes: L1 (solid blue line),
L2 (dotted green), L3 (dashed-dot red), L4
(dashed orange), and L5 (solid purple). Note
the logarithmic (linear) scales on the main
figure (inset).

(metaphorical) words of von Neumann: ‘With four parameters I can fit an elephant, and with
five I can make him wiggle his trunk’ [15]. A model with more parameters usually gives a better
fit to the data, and, thus, we must be careful to assess whether the data and their associated
errors support the new model.

In the context of neutron data analysis, we provide below an alternative answer to an old
question posed by Sivia and Carlile in their seminal study How Many Lines Are There? [16].
The advantage of the method presented in this work is its flexibility since any parametric
model, analytical or not, can be used. We briefly recall that QENS data analysis is oftentimes
complicated by the fact that a number of (a priori unknown) dynamical processes are all centered
around the elastic response of the material. In the limit of very different timescales associated
with these processes, visual inspection of the data can be a convenient starting point to construct
a suitable prior. The situation becomes less clear when spectral widths become comparable to
each other, the extreme case being the occurrence of accidental degeneracies which necessarily
lead to a reduction of the dimensionality of our available parameter space. To address this
question in a systematic manner, we have generated synthetic QENS data as the linear addition
of three equally weighted Lorentzian (L) modes convolved by a Gaussian resolution function
with a Half-Width-Half-Maximum (HWHM) of 0.005 meV. The three L modes have been
generated with spectral HWHMs of 0.02, 0.2, and 1 meV. To emulate realistic experimental
conditions, a Gaussian-distributed relative error of 6% has been added to the QENS spectrum
after convolution. These data are shown in Fig. 2.

All data fits have been performed using the current implementation of FABADA in
MANTID [7]. To explore model selection with this new MANTID tool, Fig. 3 shows best-
fit results for a total of five different models described by an increasing number of L modes,
hereafter denoted as Ln where n is the number of L modes. Visual inspection of these results
makes it clear that L1 is not capable of describing the data satisfactorily. Beyond this case, a
cursory ‘x-by-eye’ analysis of these data is no longer possible. A much closer look at specific
regions of the spectral response might still allow us to discover that L3 is slightly better than
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Figure 4. (Color online) x? PDFs for the L1-
L5 models shown in Fig. 3. The inset shows
an enlargement around L3-L5, showing that
L3 is favored over the other two. This figure
uses the same color coding as in Fig. 3.

Figure 5. Most-probable values of the y?
PDF for models L1-L5. Note the Log(Lin)
scale in the main panel (inset).

L2 (cf. inset in Fig. 3). For L3, L4, and L5, the quality of the fits remains virtually unchanged.
Thus, in this particular case, even a simple model-selection protocol using a X%ed criterion would
favor L3 over more complex descriptions of the experimental data.

To put these considerations on firmer ground, Fig. 4 shows the x> PDFs associated with each
Ln model. As it became evident from a visual inspection of Fig. 4, the most probable value
of the x? PDF for L1 peaks at x? ~ 14305, more than one order of magnitude above other
models. For L3, L4, and L5, we see that these three PDFs share the same onset corresponding
to the lowest x? (best fit), as expected from the results shown in Fig. 3. However, the mazimum
of the PDF shifts to higher x? values in going from L3 to L5. This trend is a consequence
of an increase in the number of parameters, leading to an overall broadening and concomitant
upward shift of the corresponding x> PDF. Thus, the addition of more parameters beyond L3 is
clearly not justified by the experimental data. From a physical viewpoint, the most interesting
situation relates to the differences between L2 and L3. Fig. 4 provides a quantitative answer to
this question. As shown in this figure, the PDF for L2 peaks at x? ~ 700 and does not overlap
with the corresponding one for L3. In probabilistic terms, the immediate consequence of this
result is that no combination of L2 parameters can provide a better fit than LS. Therefore, L3
18 favored over L2, a result that we have established in a robust and quantitative manner.

Although direct inspection of x? PDFs represents a safer way of performing model selection, it
might also be desirable to have a simple measure of fit quality. The results presented above make
it clear that the most-probable value of the x> PDF could be used to this end. Fig. 4 also brings
to the fore a common misconception in model selection, as the minimum y? values associated
with a particular model (the choice in popular minimization algorithms) is characterized by a
negligibly small probability. To close this discussion, Fig. 5 shows these most-probable values
as a function of the number of L. modes. As one would expect on the basis of our analysis, its
value decreases until it reaches a minimum for L3, followed by a slight increase thereafter due
to the broadening of the underlying PDF (see inset in Fig. 4). The attentive reader might also
have realized that this procedure is tantamount to the implementation of Ockham’s Razor on
our QENS data using models L1-L5.
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4. Conclusions & Outlook

Using the Bayesian fitting algorithm FABADA, we have introduced the implementation of BIMs
in the MANTID framework. This new tool enables robust data fitting and model selection well
beyond more popular and widespread data-analysis methodologies. To illustrate its use, we have
revisited an old (yet still topical) question relating to the number of spectral modes present in
QENS data. From this exercise, we highlight the merits associated with the use of the entire PDF
of the CF instead of relying on single-valued criteria such as the minimum x?. This approach
allows us to ascertain in a quantitative manner whether any combination of parameters for a
given model could provide a better description of the experimental data relative to other models.
Although it is true that in this simple case a classical model selection would have performed
quite good, we would like to point out that the presented method is able to deal with some cases
where classical fitting algorithms would not be able to provide a right answer.

We would like to emphasize that this method does not rely on any assumptions relating to
the shape of the underlying x? landscape or possible correlations between fit parameters. For
the QENS data explored herein, we have only assumed that the data arises from a counting
experiment with sufficiently high count rates such that the underlying Poisson distribution
becomes Gaussian. Relaxing this assumption has already been implemented with success [3]
and could find further use in the analysis of neutron experiments suffering from inherently low
signal levels. Moreover our approach is able to include prior knowledge to the fitting, for example
coming from previous determinations as shown in the work of Henao et al. [5]. Classical methods
based on x? are not able to deal with non-Gaussian distributed parameters, small number of
counts or including previous information.
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