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Abstract. This paper concerns a control approach of a fleet of Unmanned Aerial Vehicles 
(UAV) based on virtual leader. Among others, optimization methods are used to develop the 
virtual leader control approach, particularly the particle swarm optimization method (PSO). 
The goal is to find optimal positions at each instant of each UAV to guarantee the best 
performance of a given task by minimizing a predefined objective function. The UAVs are able 
to organize themselves on a 2D plane in a predefined architecture, following a mission led by a 
virtual leader and simultaneously avoiding collisions between various vehicles of the group. 
The global proposed method is independent from the model or the control of a particular UAV. 
The method is tested in simulation on a group of UAVs whose model is treated as a double 
integrator. Test results for the different cases are presented. 

Keywords : PSO algorithm, Fleet control, Virtual Leader, generating path. 

 

1. Introduction 
Recently, various applications of UAVs (Unmanned Aerial Vehicles) are emerging in the military, but 
also in the civilians areas. Using multiple vehicles fleet can cover large areas of research, 
surveillance[1], inspection[2] etc .. Recently, the attention of some scientists turned to imitate the 
behavior of birds in a fleet in order to make an autonomous flying formation [3][4].  
Some solutions use leader, and in these approaches, there are various flight training control strategies : 
Leader-follower[5][6] (hierarchical approach), Virtual Leader [7][8][9] and control based on behavior 
[10][11] (decentralized approach). The method considered in our approach consists in replacing the 
head of the formation of the leader-follower approach by a virtual leader. All training entities receive 
the path of the mission which is considered as the virtual leader itself. A major disadvantage of the 
classical leader-follower strategy is that the risk of collision between agents increases[6], because 
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there is no return (feedback) training. In our approach, each agent also receives (and ises) information 
from its neighbors.  
In this article, the objective is to develop a fleet control strategy for a group of UAVs capable of self-
organizing and covering a surface in a predefined architecture/topology or to fly in formation, 
following a mission led by a virtual leader while ensuring collision avoidance between team members. 
In our case, we postulate that the gathering fleet is a reference generation problem rather than a control 
design problem. It is formulated as an optimization problem in order to find for each agent of the fleet 
reference to follow the trajectory at each instant � which minimizes a predefined objective function. 
Each UAV is assumed to be further controlled by a control law and it can measure the positions of all 
the agents in his neighborhood thanks to vision techniques and/or wireless communication 
capabilities. We consider in this paper, a simplified case of figure 2 without data loss communication 
delay or disruption. 
This strategy was introduced in [12]. In our previous work, the objective function has been minimized 
in a simplified manner. The goal was to choose among a number of reachable points from a UAV, the 
position that minimized at best the objective function. In order to improve our approach we have 
chosen to use an optimization method that is more developed and responsive to the command of our 
fleet. This method is derived from meta-heuristics and is called Particle Swarm Optimization (PSO). 
The control systems by Meta-heuristics, such as genetic algorithms[13], ant colony optimization 
algorithms[14] or by particle swarm optimization [15][16] have been the subject of several studies in 
the literature. Although genetic algorithms are very effective in finding the global minimum, their 
complexity and their execution time is their biggest disadvantage. The PSO algorithm has 
demonstrated very good performance by minimum search term with a minimum calculation time and 
relative ease of implementation [17]. These performances have oriented us to choose PSO 
The paper is organized as follows. Section 2 is dedicated to the problem statement. Then, Section 3 is 
devoted to the optimization problem and the PSO algorithm description. In Section 4, the performance 
of the method based on various simulations has been illustrated. Finally, a conclusion and perspectives 
are presented. 

2. Problem statement 
The goal of our approach is to get a set of UAVs to fly on a 2D plane following a trajectory considered 
as a virtual leader while converging to a predefined spatial configuration (a flying pattern) and 
avoiding collisions. 
Let us consider � mobile UAVs operating in space �� with ��(�) the robot position 	 at time � > 0. 
The system can be described by a weighted graph �	(�, �(�), �(�)) where �	 = {1, . . . , �} and 
�(�) 	∈ � × � are the set of nodes and the set of arcs respectively of the graph � and �(�) a matrix of 
��(�) of elements in � as ���(�) > 	0 if :  (�, 	) ∈ �(�). At each sample 	 is an incoming neighbor of � 
and � is an outgoing neighbor of 	.  
� is assumed to be an undirected graph such as: ∀(	, �) ∈ �(�) 	⇒ (�, 	) ∈ �(�). In this case the matrix 
�(�) is symmetrical with ���(�) = ���(�). 
Let us define for each 	 node a set of neighbors Ξ�(�) such that : 
 
                                            Ξ�(�) = {	�	 ∈ 	� ∶ 	 ||	#�(�) − #�(�)|| 	≤ 	&	}                                             (1) 
 
where & defines the scope of the neighborhood. 
Let's now consider for simplification, a fully actuated UAV 	 with dynamic model given by : 
 
                                                                       �'� = (�                                                                            (2) 
                                                                       ('� = *�                                                                            (3) 
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where �� = [#�, -�]/ is the configuration of UAV 	, *� is its control input and  (� its velocity vector. 
The control law is given by : 
 
                                                       *� = 01��2 − ��3 + 51�'�2 − �'�3 + �6�2                                         	(4) 
 
The objective is to achieve a formation flight based on a virtual leader 8. All training UAVs receive 
the trajectory of the mission. This trajectory is that of the virtual leader. The control strategy 
considered is completely independent from the underlying conception of the individual robot control.  
The main idea is to find at each time � a desired reference input ��2 ∈ �� for each UAV 	 of the fleet 
based on the desired reference trajectory 82(�) and the 9 positions of the servants in its field of vision 
#�(�) with � ∈ Ξ�(�) such that lim 	�(�) = �2 while ensuring the anti-collision of the UAV with �2 
being the desired adjacency matrix. This constraint can be rewritten as : 

 
                                                           ∀��, �� ∈ � ∶ 	 ||#�(�) − #�(�)|| 	> 	=                                         (5) 

 
where = is a constant safety distance. 
This objective is achieved by minimizing the cost function ?�(�) for each one of the team member 	. 
3. Methodology 

3.1. Assumptions and Optimization Problem  
Given a team of � UAVs operating in space ��. The entire system is described by a non-oriented 
weighted graph �(�, �(�), �(�)), where �(�) is a � × �  matrix defined positive and symmetric, with 
��,�(�) the distance between the node 	 and � at time �.  
The neighbors of a robot 	 are defined in eq.(1) where Ξ�(�) is called the metrical neighborhood of the 
robot 	. The control objective is to bring the fleet from an initial configuration �(�@) to a desired 
configuration �2(i.e the desired formation). This problematic can be formulated as an optimization 
problem. 
At first, let us define a cost function ΛB(�) for each UAV i such that: 

 

  ?�(�) = C	 D	||18E(�) − (#	(�) + ℎ)3|| − �	G(�)H +	∑ 0	�(�) 	J|| D#�(�) − (#	(�) + ℎ)H || − �	�(�)KL
�=1   (6) 

 
with 	 ≠ �, L = =�OE(Ξ�(�)), ℎ ∈ ��, and   C ≫ 1 
The main goal is to find the best vector h for each agent i minimizing the cost function  ΛB(t) such 
that: 

 
                                              ∀	 ∈ �, limR→T ΛB(�) = 0 ⇒	 limR→T A(�) = �2                                  (7) 

 
The reference trajectory at time � + 1 for the agent i will then be:  

 
                                                               #�2 	(� + 1) 	= #�	(�) + 	ℎ                                                      (8) 

   
The ρ coefficient in the cost function should be larger than 1. This choice is due to the fact that we 
favor each agent 	 position that tends to be in the direction of the virtual leader X affected by the 
reference trajectory 82(�). 
During the evolution of the robots in �� space, non-collision of the agents should be ensured. This 
constraint, as shown in the previous section, can be written as follows: ∀�� ∈ �, ∀�� ∈ ℎ� ∶ 	 ||#�(�) −
#�(�)|| 	> =, where = ∈ � is the minimum distance between the two agents 	 and � ∈ N do not cross. 
On matrix �(�), this means that : 
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                                                 ∀	���(�) ∈ �(�) ∶ 	 ���(�) > =, with 	 ≠ �                                             (9) 
 

In order to introduce this condition in the cost function ΛB(t), we define new functions 0��(�) between 
each agent i and its neighbors j such that : 

 

                                                           0��(�) = 1 + exp(^_`ab(R)c )                                                       (10) 
 

The value of the 0��(�)function depends on the difference between ���(�) the distance between two 
Robots  	 and � with the safety distance c, it is all the greater when ���(�) < = and converges to the 
value 1 when ���(�) ≫ = . 
So, each agent i is more likely to favor the values of h which avoids the need for the distances 
���(�) < = and minimizes at best the cost function ΛB(t), thanks to the PSO algorithm. 

3.2. PSO Algorithm 
The particle swarm optimization method appeared in 1995 in the U.S.A and was designed by Eberhart 
and Russel James Kennedy [20]. It is based on the notion of cooperation between agents called 
"particles", which manage to solve complex problems by exchanging information. 
The PSO algorithm is initialized by a random population of potential solutions #(�), interpreted as 
particles moving in the search space where e(�) represents their speed. Each particle is attracted to its 
best position discovered in the past noted 8f as well as to the best position of the particles discovered 
by its neighborhood 8�. 
The algorithm includes several setting parameters to act on the compromise Exploration - 
Exploitation. Exploration is the ability to test various regions of space for "looking good" candidate 
solutions. The Exploitation is the ability to focus research around promising solutions to get as close 
as possible to the optimum. 
The classic PSO algorithm is written as follows [18] : 

 
                                     e(� + 1) = �	e(�) + gfOf	18f(�) − 	#(�)3 + g�O�	18�(�) − 	#(�)3             (11) 
                                     #(� + 1) = #(�) + e(� + 1)                                                                          (12) 

 
Where, � is the coefficient of inertia, gf and g� two real representing the intensity of attraction and  
Of, O� two random values between 0 and 1. 
To simplify the study, we consider the deterministic version of the algorithm, where random numbers 
are replaced by their average values 1 2⁄  . 
With simplifications, the algorithm can be written as: 

 
                                                     e(� + 1) = �	e(�) + g	18(�) − 	#(�)3                                         (13) 
                                                     #(� + 1) = #(�) + e(� + 1)                                                          (14) 
     
Where : 

8(�) = ijkj(R)limkm(R)
ijlim     and     g = ijlim

�  

 
To make a dynamic analysis of the algorithm, the equations (13) and (14) are rewritten in the matrix 
form : 

 
                                                e(� + 1) = −g#(�) + �	e(�) + g	8(�)                                             (15) 
                                                #(� + 1) = #(�) + [−g#(�) + �	e(�) + g	8(�)]                               (16) 
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Then : 
 

                                                e(� + 1) = −g#(�) + �	e(�) + g	8(�)                                             (17) 
                                               #(� + 1) = (1 − g)#(�) + +�	e(�) + g	8(�)                                    (18) 

 
The equations of the algorithm can then be written in the following matrix form : 
 

                                                   Dn(Rlf)
o(Rlf)H = �	 Dn(R)o(R)H + p	8(�)                                                 (19) 

 

Where : Dn(R)o(R)H	 is the state of the system, consisting of the position of the particle and its velocity, P 

the system input,  � = q1 − g �
−g �r is the dynamical matrix, and p = qggr	 the input matrix. 

 
The equilibrium point of the system is such that the particle is positioned in P "#(�) = 8" and has a 
zero speed e(�) = 0. 

 
Behaviors of the particle depend on the eigenvalues of the matrix A are the solutions of :  
Et�(9u − �) = 0,  i.e : 

 
                                                              9� − (� − g + 1)9 + 	� = 0                                                 (20) 

 
The behavior and the convergence of the algorithm depend on the parameters � and g. The analysis of 
the equation (20) leads to determine the area of convergence of the PSO according to their values. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1.  PSO convergence area 

 
Figure 1 shows the values (plain area) that should have the parameters � and g for a convergence of 
the algorithm [19]. 

4. Simulation Results 
The proposed method for the control of the fleet has been evaluated by the simulation of a group of 6 
UAVs. The trajectory of the fictitious agent is defined initially in a fixed position, and secondly in 
motion. The results are compared with different initial conditions (positions of UAVs).  
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Figure 2.  Control scheme of the fleet of UAVs 

 

4.1. Stationary Leader Case 
The constant sampling time is set to 10-2 seconds. The leader’s position is stationary. The desired 

configuration for the  UAVs is set from the desired �2 adjacency matrix. 

In this case, the form of a circle is given as  the desired configuration and we simulate the behavior 
of the fleet for different initial conditions. 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 3.  Circle Formation of the UAV Fleet with Stationnary Virtual Leader 

 
Figure 3 shows the results obtained b1, b2, b3 with respectively the initial positions a1, a2 and a3, the 
UAVs fleet is able to reproduce the desired configuration i.e. the shape of a circle with the virtual 
leader at its center. 
 To evaluate the evolution of the distances between the UAVs and ensure that there is no collision 
between the flying robots, changes of the cost function ΛB(t) of each UAV with the initial positions 
(a1) is plotted in figure 4. 
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Figure 4.  The variation of the cost function for Each UAVs with Stationnary Virtual Leader 

 
The cost function decreases more and more as the fleet converges towards the desired configuration. A 
collision between two UAVs would appear on the cost function as a great increase in its value 
according to equation (10). As presented in Figure 4, it should be noticed that the safety distance and 
scope of the neighborhood is respected throughout the simulation. The performance of the PSO 
algorithm are good and the system converges after 4s. The simulations are repeated 100 times with 
different initial conditions. We have considered that the initial distance between two UAVs is greater 
than the safety distance. The results are equivalent to those obtained for the case a1 with average 
convergence time equal to 4s.  

4.2. Mobile Leader Case 
In the second part of the simulation, the leader is now in motion following a straight trajectory. 

As in the previous example, various initial conditions a1, a2 and a3 are considered and a form of a 
circle is given as  the desired configuration. The results obtained with the initial conditions a1 are 
illustrated in the following graphs (Figures 5 to 7). 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Circle Formation of the UAV Fleet with Mobile Virtual Leader 

 
The figure 5 shows the evolution of the fleet on a 2D space. The desired configuration is a circle as in 
the previous example. The simulation demonstrates clearly that the fleet converges to the desired 
configuration while following the trajectory of the virtual leader. 

12th European Workshop on Advanced Control and Diagnosis (ACD 2015) IOP Publishing
Journal of Physics: Conference Series 659 (2015) 012015 doi:10.1088/1742-6596/659/1/012015

7



 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  The variation of the cost function for Each UAVs with Mobile Virtual Leader 

 
Figure 6 shows the performance of the PSO algorithm in the case of a moving leader. The 
convergence speed is reasonable and in the order of 5s. The simulations are also repeated 100 times 
with different initial conditions and the results are equivalent to the case illustrated in the above 
example. The approach considered in our simulations is able to reproduce without difficulty geometric 
configurations and flight training while ensuring the constraint of the anti-collision.  

5. Conclusion 
The paper presents a fleet control strategy based on a multi-agent system with a virtual leader. The use 
of the PSO algorithm that is part of optimization algorithms family called Meta-heuristic allowed us to 
have better results in terms of convergence speed and optimal solution. 
This approach has been tested in simulation on a group of UAVs simply modeled as double integrators 
for our study. In our simulations, both the cases of the virtual leader standing and in motion has been 
considered. 
The results clearly show that the proposed method is effective to cover the surface and the fleet 
command. The records obtained also show a robust approach against collisions, which was the main 
drawback of control by the virtual leader in the literature. 
A future application of control strategy on non-linear complex systems and implementations on real 
systems are planned. An improvement would be to introduce the dynamics of controlled systems in the 
optimization algorithms to better find the most appropriate one for the studied systems solutions. 
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