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Abstract. Parameter identification from noisy data is an ill-posed inverse problem and data
noise leads to poor solutions. Regularization methods are necessary to obtain stable solutions.
In this paper we introduce the regularization by means of an iteratively weighted constraint and
define an algorithm to compute the weights and solve the constrained problems using as prior
information the given measurements. Although this approach is general, in the present work
we prove the convergence in the case of least squares data fit with �2 regularization term. The
data reported in the numerical experiments prove the efficiency and good quality of the results.

1. Introduction
Parameter identification is a very important topic in applied sciences and engineering. The
modeling of biological or chemical systems requires often to estimate the parameters of
differential models from noisy measurements (see for example [1],[2]). Parameter identification
is an optimization problem where the objective function, usually non linear, represents the fit
to the observed data. The solution process requires to repeatedly solve the differential problem,
called forward problem or state equation. The majority of these identification problems is ill-
posed, i.e. the parameters do not depend continuously on the data, which cannot be measured
exactly but are affected by noise. Therefore regularization methods have to be used in order to
obtain stable solutions. Aim of this work is to present an algorithm, in a general framework, to
compute a regularized solution of the parameter identification problem by adding a smoothing
constraint with automatic computation of the regularization parameter. The idea of solving
identification problems by a sequence of constrained optimization problems is widely present
in the literature (see for example [3, 4]). Although the scheme is general, in this paper we
analyze the details of choosing the �2 norm for both the objective function and the penalty
term, obtaining therefore the Tikhonov regularization. The application of this regularization
method to parameter identification problems has been extensively investigated in the literature
[5, 6]. The main difficulty of the Tikhonov regularization is the correct computation of the
regularization parameter. In our approach we define an iterative procedure to adjust the weight
of the smoothing constraint, without assuming any prior knowledge of the noise level. We define
the Constrained Least Squares Identification algorithm (CLSId), by extending the principle
already used in image deblurring and denoising problems [7, 8]. The regularization method for
generic objective and penalty functions is discussed in section 2, while in section 3 we report
the algorithmic features for the �2 norm. The iterative procedure to compute the regularization
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weight is analysed is section 4. In the numerical experiments, reported in section 5, we show
the results of two parameter identification test problems.

2. The Parameter Identification Algorithm
We consider the discrete finite dimensional problem of estimating the parameter q ∈ R

K of
a differential model (state equation) c(u,q) = 0, usually an ordinary or partial differential
equation. We assume that the measurements are obtained by mapping the solution of the state
equation u(q) (state variable) at some measurement points (y = F (u(q))) and adding the noise,
represented by a discrete normalized random distribution with zero mean and assigned variance
δ:

yδ = y + δη (1)

where y,η ∈ R
N and ‖η‖ = 1. The parameter identification is obtained by minimizing a cost

function J(q) representing the data fit of the model measurements F (u(q)) to the noisy data yδ.
The majority of such identification problems is ill-posed hence regularization methods have to be
used in order to obtain stable solutions. In the present work we introduce a smoothing constraint
R(q) and define the regularized solution qreg as the solution of the constrained optimization
problem:

minqJ(q), s.t. R(q) ≤ γ (2)

where γ > 0 defines the prescribed smoothness level required by the solution. Our aim is to
define a general scheme to compute a suitable value of the regularization constraint γ and to
efficiently compute the regularized solution qreg. Assuming R(q) and J(q) are continuously
differentiable and convex, problem (2) can be formulated in the equivalent Lagrangian dual
form as:

max
λ

Φ(λ), where Φ(λ) ≡ min
q

L(q, λ) (3)

where L(q, λ) ≡ J(q) + λ (R(q)− γ).

After imposing the first order conditions ∇λL(q, λ) = 0 we can define the solution λ̂ of the
dual problem (3) as:

find λ̂ s.t. R(q̂)− γ = 0, (4)

where q̂ is the solution of the unconstrained problem:

min
q

J(q) + λ(R(q)− γ) (5)

with λ = λ̂. Assuming that R(q(λ)) is a continuously differentiable function such that

(i) R(q(λ)) is strictly decreasing in the interval [λ−, λ+] (0 ≤ λ− < λ̂ < λ+).

(ii) G(λ−) > 0, G(λ+) < 0, γ > 0.

where q(λ) = argminqL(q, λ) and G(λ) ≡ R(q(λ))− γ, using proposition 1 in [7] we can define
an hybrid bisection-secant method to compute the sequence {λk}, k = 0, 1, . . ., that converges to

the root λ̂ of G(λ), ∀λ0 > 0 such that R(q(λ0))− γ < 0. Hence for each assigned value γ > 0,
assuming that λ0 satisfies R(q(λ0)) < γ and that R is strictly decreasing, we can compute the

sequence {λk,qk} converging to the solution of the dual problem λ̂ and to the solution of the
constrained problem (2) qreg ≡ q̂. The values {λk,qk} are computed by means of (4), (5) as
follows:

λk = λk−1 + bisection− secant step (6)

q(λk) = argminq {J(q) + λk(R(q)− γ)} (7)

Since the unconstrained minimization problem (5) (with λ = λk) is solved at each step of the
iterations (7), then it is of great importance to use accurate and efficient methods.
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3. Least Squares Regularization
The quality of the problem solution depends strongly on the specific choice of the objective
function J(q) as well as the penalty term R(q). Assuming to have Gaussian white noise on the
data, the fit function J can be suitably defined by the least squares distance. In this case, in
(5), we have:

q(λk) = argminq

{
‖F (q)− yδ‖22 + λk(R(q)− γ)

}
(8)

A fast and simple way to solve this non linear problem is by the Gauss Newton method. Defining
the Jacobian matrix JF (q) = ∂Fi/∂qj , we compute the solution of (8) as q(λk) = p(m) with

p(0) = q(λk−1) and

p(m) = argminq

{
‖JF (p(m−1))(q− p(m−1))− r(m−1)‖+ λk (R(q)− γ)

}
, m = 1, 2, . . . (9)

where r(m) = yδ − F (p(m)) is the residual vector. The iteration (9) is repeated until
‖p(m) − p(m−1)‖∞ < tol‖p(m)‖∞. The solution p(m) in (9) is computed by applying the Armijo
damping rule, to guarantee the decrease of the regularized objective function. The parameter tol
controls the convergence: using a too small value causes an increases of the algorithm complexity
and may not represent a real improvement in the quality of the results. The computation of the
residual and Jacobian matrix requires to solve the differential state equation with several values
of the parameter. In the present work we solve the state equation by means of a finite difference
method using central second order finite differences. The Jacobian matrix is computed by means
of forward finite difference approximation. By choosing the regularization function as:

R(q) = ‖L2q‖22 (10)

where L2 is the second order difference matrix, we can prove that ‖L2w(λ)‖2 is strictly decreasing
for each solution w(λ) of the minimization problem (9) with λ = λk, k = 0, 1, . . ..

Proposition 1. Let
π(λ) = ‖L2w(λ)‖2, α = 0, 1, 2

where w(λ) satisfies (9) for k = 0, 1, . . . then π(λ) is strictly convex on [0,∞) and decays
monotonically to zero as λ increases from zero.

Proof. Applying the first order conditions to (9) we can define the solution w(λ) as:(
JF (p

(m))tJF (p
(m)) + λLt

2L2

)
w(λ) = −JF (p

(m))tz(k) (11)

where z(k) = r(k) − JF (p
(m))p(m). Introducing the Generalized Singular value Decomposition

(GSVD) [9, 10] of the matrix

B =

[
JF (p

(m))
L2

]
,

JF ((p
(m)) ∈ R

N×K

L2 ∈ R
NL×K

in the assumption that rank(B) = k ≤ K and N ≥ K:

JF = UDJX
−1, Dj = diag(θ1, . . . , θK) ≥ 0

L2 = V DLX
−1, DL = diag(β1, . . . , βt) ≥ 0

where U ∈ R
N×N and V ∈ R

NL×NL are orthogonal matrices and X ∈ R
K×K is non singular

and: 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θK ≤ 1, 1 ≥ β1 ≥ · · · ≥ βt ≥ 0, βt+1 = . . . = βK = 0 t = min(NL,K)
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Using the GSVD in (11) we can write the solution w(λ) as :

w(λ) = X−1
(
Dt

JDJ + λDt
LDL

)−1
Dt

JUz(k)

and substituting it in π(λ) we have:

π(λ) =
√

(DJXw(λ))tDJXw(λ) =

(
t∑

i=1

μ2
i

(μ2
i + λ)2

(U t
i z

(k))2

)1/2

where μi = θi/βi. Now we can use Lemma 2.1 in [11] defining ai = μiU
t
i z

(k), bi = μ2
i and

π(λ) = χ(λ) ≡
(

t∑
i=1

(
ai

bi + λ

)2
)1/2

and prove that π(λ) is strictly convex on [0,∞) and monotonically decreasing to zero as λ
increases from zero.

This guarantees that assumption (i) at page 2 is fulfilled and the sequence (λk,qk) converges
to the solution of the dual problem. Hence we can define the Constrained Least Squares
Identification algorithm CLSId as follows:

Algorithm CLSId(γ)
k = 0; λ0 = 1,
repeat

q(λk) = argminq {J(q) + λk(R(q)− γ)} (Gauss Newton + Armijo)
Gk = R(q(λk))− γ
λk+1 = λk+hybrid bisection-secant step

k = k + 1
until |Gk − γ| < τrG0 + τa or |λk − λk−1| < τa or k > maxit

where τa, τr are relative and absolute tolerance parameters.

4. Iterative estimate of the smoothing parameter γ
In order to obtain a good quality solution, a suitable value of the smoothing parameter γ needs
to be computed. If γ is too small, the smoothing constraint forces the solution of (2) away
from the noisy data, producing a smooth solution q with a large J(q). On the other hand, if
γ is too large, the regularity constraint becomes looser, allowing a better fit to the noisy data
(small J(q) value). Since the optimal value γopt lies in between these two extrema, our idea is
to define a starting value γ0 < γopt and increase it on the basis of the behavior of the data fit
function, with the aim to get closer to γopt. Observations performed on different problems show
that J(q) decreases steeply when γ 
 γopt and tend to become almost flat when γ gets closer
to γopt. Therefore we define the sequence γ0,≤ γ1 ≤ · · · as:

γ�+1 = (1 + θ)γ�, if J(q�)− J(q�−1) > τ(γ� − γ�−1), γ�+1 = γ� otherwise (12)

with θ representing the relative change in γ�+1 and τ the decrease rate of the data fit function
at q�, defined as the solution of (2) with γ = γ�. The starting value γ0 is defined by computing
a smooth approximate solution. The least squares fit function allows us to apply the Nonlinear
Conjugate gradient method (NCg) to the problem minq J(q). The semi-convergence of the
NCg iterations is well known and also the strong smoothness of the first NCg iterates. Using
this property we compute qcg by early stopping NCg (2-3 iterations) and define γ0 = ‖L2qcg‖22 .
Despite the number of parameter is increased, the tuning of τ = 10−p, p = 1, 2 and θ ∈ [1/4, 1/2]
is easier compared to γ that can change of several orders of magnitudes, depending on the
problem.
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5. Numerical Experiments
In this section we report some numerical tests where the state equation is a second order linear
boundary value problem. The experiments are carried out on Intel Core i5 1.60GHz×4 processor
(5.8 GiB RAM), using Matlab 2010a. Test problems:

T1 Identification of the reaction parameter q(x) in the stationary model:

u(x)′′ − q(x)u(x) = f, u(0) = u(1) = 0, x ∈ [a, b] ≡ [0, 1] (13)

where the function f is defined by setting u(x) = sin(πx) and the parameter q(x) =
10(x4−sin(πx)). The starting value q0 is obtained to guarantee that at least the boundary
conditions are fulfilled, by sampling the function: q0(x) = 10(2x3 − (1 + π)x2 + πx) [12].

T2 Identification of the diffusivity function c(x) in the differential model:

(c(x)u(x)′)′ = f(x), u(0) = u(1) = 0, x ∈ [a, b] ≡ [0, 1] (14)

where the function f is defined by setting u(x) = sin(πx(1 − x)) and the parameter

q(x) = 1 + e−(10(x−0.3))2) + e−(10(x−0.7))2). The starting value q0 = 1 is used.

The discrete reference solution of the state equation, is computed by the finite difference
method, sampling the spatial domain with a uniform grid of M points xi = a + (i − 1)(b −
a)/(M − 1), i = 1, . . . ,M . The noiseless measurements y are obtained by interpolating the
reference solution in the measurement points defined by a uniformly spaced grid of N points:
a = ξ1 < ξ2 < . . . ξN−1 < ξN = b. Gaussian white noise, as in (1), is added with different
levels δ ∈ [10−4, 10−1]. The quality of the results is evaluated by the Parameter Relative Error
(PRE) and the Residual Norm (ResN): PRE = ‖qreg−qtrue‖2/‖qtrue‖2, where qreg is obtained
applying the regularization algorithm CLSId and qtrue is the discretization of the parameter
q(x) at the measurement points ξ1, . . . , ξN . The quality of the reconstructions depends on the
discretization values N and M . For values of M and N fixed, the results depend on the level
of noise present in the data and on the value of the smoothness level γ. To analyze the features
of the regularization algorithm CLSId(γ) we focus on the case M = 1001, N = 101 and with
tolerance parameters τa = τr = 1.e− 4. The reference value γcg of the regularization constraint
is obtained by stopping the nonlinear Conjugate Gradient iterations as soon as the ratio between
the actual residual norm and the initial residual norm is less than 99%. The adapted parameter
γadapt is computed by (12) with τ = 0.1 and θ = 0.3 if |J(qcg)−J(0.8qcg)| > 1.e−5 and θ = 1.3
otherwise. Table 1 reports γadapt and the relative error obtained by CLSId(γadapt) (PRE(γadapt))
for different noise levels. These values are compared to γopt and PRE(γopt) where the optimal
parameter γopt is computed by applying CLSId(γ) to a large set of parameters γ and taking the
value γ corresponding to the minimum PRE. The computational performance is reported by
the number of steps � and the total number of Gauss Newton iterations GNit. Figures 1(a) and
2(a) show the reconstructed and true parameter obtained in the case δ = 0.1 and δ = 5.e − 3
respectively. In figure 1(b) the parameter relative errors obtained by choosing the smoothing
levels γadapt, γcg, γ0 = ‖Lq0‖22 are compared to the error obtained by the optimal parameter
γopt. We observe that both γcg and γ0 give large reconstruction errors while γadapt allows us to
obtain nearly optimal results. Finally the typical behavior of the parameter error obtained by
the iterative procedure (12) is shown in figure 2(b).

6. Conclusions
Future work includes the application of different quasi-Newton methods and the extension to
non linear time dependent differential models typical of biochemical reactions.
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Test δ PRE(γadapt) γadapt �(GNit) γopt PRE(γopt)
T1 1.e-3 9.469e-3 2.423e-3 1 (25) 2.436e-3 9.341e-3

5.e-3 1.051e-2 2.2424e-3 1 (18) 2.232e-3 1.011e-2
1.e-2 1.571e-2 2.429e-3 1 (17) 2.916e-3 1.357e-2

T2 1e-03 7.8122e-3 9.0088e-3 6 (63) 9.0284e-3 7.8002e-3
5e-03 1.5877e-2 9.0306e-3 6 (58) 9.0656e-3 1.5863e-2
1e-02 1.1775e-2 2.9921e-2 7 (68) 6.9674e-03 2.8706e-02

Table 1. CLSId results.
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Figure 1. Test Problem (13)

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5
γadapt= 9.11e−03  PRE = 1.59e−02

qadapt

qtrue

(a) Case δ = 5.e− 3

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

γ

PRE(γ)
PREadapt steps

PREadapt

PREopt

(b) PRE(γ) vs γ

Figure 2. Test Problem (14)

References
[1] Becker R, Braack M and Vexler B 2004 Compust. Theory and Modelling 8
[2] Zama F, Ciavarelli R, Frascari D and Pinelli D 2013 Numerical parameters estimation in models of pollutant

transport with chemical reaction System Modeling and Optimization (IFIP Advances in Information and
Communication Technology vol 391) ed Dietmar H and Fredi T (Springer Berlin Heidelberg) pp 547–556
ISBN 978-3-642-36061-9

[3] Ito K and Kunisch K 1990 SIAM Journal on Control and Optimization 28 113–136
[4] Kunisch K and Sachs E W 1992 SIAM Journal on Numerical Analysis 29 1793–1820
[5] B K, A N and O S 2008 Iterative Regularization Methods for Nonlinear Problems (de Gruyter Berlin, New

York)
[6] B K, a K and B V 2014 Inverse Problems 30 045002
[7] Piccolomini E L and Zama F 2011 Applied Mathematics and Computation 217
[8] Chen K, Piccolomini E and Zama F 2013 Numerical Algorithms 1–20
[9] Paige C and Saunders M 1981 SIAM Journal on Numerical Analysis 18 398–405
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