This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

3D crown spike of free surface induced by two bubbles

, and

Published under licence by IOP Publishing Ltd
, , Citation R Han et al 2015 J. Phys.: Conf. Ser. 656 012020 DOI 10.1088/1742-6596/656/1/012020

1742-6596/656/1/012020

Abstract

A specific physics called 'crown phenomenon' is discovered in the interaction between weak buoyancy bubbles and free surface. The 'crown phenomenon' is that a circle of the outer fluid appears to surround the middle spike of water after the jet impact of bubbles, and this kind of spike is defined as 'crown spike'. In this study, the crown spike due to the coupling effect between two bubbles and free surface is studied both experimentally and numerically. In the experiment, copper wires in series connection are used to generate two inphase bubbles and the bubble and free surface shapes are recorded by high-speed photography. In the numerical study, a three-dimensional model is established to simulate the bubble-free- surface interaction with a boundary integral method and then the motion of free surface is further simulated without regard to the effect of bubbles after the jet impact. The computation also traces the 'crown phenomenon', which is considered as a second spike related to a large high-pressure region formed after the impact. The large high-pressure region leads to a thick column of water on the free surface and then the column of water gradually increases to surround the first spike. Both oblique jets and crown spike are observed in the experimental and numerical results, and the favorable agreements of bubbles and free surface shapes validate the present model. The effect of the inter-bubble distance on crown spike is also investigated.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/656/1/012020