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Abstract. A new implicit velocity-pressure split method is discussed in the given presentation.
The method implies using conservative velocities, obtained at the given time step, for integration
of the momentum equation and other convection-diffusion equations. This enables simulation of
super- and hypersonic flows with account of motion of solid boundaries. Calculations of known
test cases performed in the FlowVision software are demonstrated. It is shown that the method
allows one to carry out calculations at high Mach numbers with integration step essentially
exceeding the explicit time step.

1. Introduction

The methods developed for numerical integration of the 3D transient Navier–Stokes equations
can be broken up into two groups: the methods based on pressure and velocity and the methods
based on density and velocity. The methods based on pressure and velocity effectively treat
incompressible and weakly compressible flows. Normally, they are not used for simulation of the
flows characterized by high Mach numbers. On the contrary, the methods based on density and
velocity are used for solving problems of super- and hypersonic aerodynamics. But they cannot
treat incompressible and weakly compressible flows. Note that stagnation and recirculation
zones occur near a hypersonic vehicle. These zones can be considered as incompressible flows,
since the gas velocity here is small. For this reason, development of the methods based on
pressure and velocity are of current interest for super- and hypersonic aerodynamics.

Initially, the methods from this group have been designed for simulation of incompressible
flows. A pressure correction method has been suggested in [1]. In [2] and [3] it was
modified for steady-state problems. An alternative for steady flows is the method of artificial
compressibility [4]. It was used in [5–7]. The most popular and actively used methods for
integration of “ incompressible” Navier–Stokes equations are SIMPLE, SIMPLEC, SIMPLER,
PISO. Method SIMPLE (Semi Implicit Method for Pressure Linked Equation) is described in [8].
Explicit split method for solving the Navier–Stokes equations is described in [9,10]. An implicit
version of this method is given in [11]. In FlowVision software, the implicit version of the classic
split method has been extended to compressible flows [12].

All the aforementioned methods assume solving of the momentum equation with use of the
pressure field and conservative velocities (i.e. the velocities satisfying the continuity equation)
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at the cell faces obtained at the previous time step. The momentum equation is followed by
the Poisson equation for pressure and correction of the velocity field using the pressure field.
The drawback of these methods is that the conservative velocities are computed at the end of
time step. This is why they cannot be used for solving a problem with boundaries moving with
respect to a fixed grid.

The current paper submits a new implicit velocity-pressure split method, which uses
conservative velocities obtained at the given time step for solving the Navier–Stokes equations
and the other convection-diffusion equations entering the mathematical model. The method is
compatible with technologies of moving boundaries. In FlowVision software, moving boundaries
occur when a moving body is present in the computational domain, when a conjugate FSI (fluid-
structure interaction) problem is solved, when a flow with free or contact surfaces is simulated.
The method enables integration of the governing equations at large Mach numbers with time
steps essentially exceeding the explicit time step.

2. P-V split approach

Let a computational domain is specified and a finite-volume computational domain is introduced
into it. All the sought-for variables (ρ, p, T , V - density, pressure, temperature and velocity)
are stored in the cell centers, i.e. the grid is non-staggered. Besides that specific mass flow rates
W = ρV are determined at the cell faces. Let values ρnc , p

n
c , T

n
c , V

n
c are known at time layer

t = tn. Here index c denotes a cell center, index n is the time step number. It is necessary to
find values ρn+1

c , pn+1
c , T n+1

c , Vn+1
c at the next time step. Consider the main equations. The

momentum equation reads:

ρn+1
c Vn+1

c − ρncV
n
c + τCD

(
Wn+1

f ,Vn+1
c

)
= −τ∇pn+1. (1)

Here CD is an operator approximating the convection and diffusion terms in the momentum
equation, ∇ is an operator approximating the pressure gradient, τ = tn+1 − tn is a time step.
Subscript f denotes the value of a variable computed at a cell face. The continuity equation:

ρn+1
c − ρnc

τ
+∇Wn+1

f = 0. (2)

Here ∇ is an operator approximating the divergence of a vector variable. The energy equation:

ρn+1
c Hn+1

c − ρncH
n
c

τ
+ CD

(
Wn+1

f ,Hn+1
)
=

pn+1
c − pnc

τ
. (3)

Here Hn+1
c is the total enthalpy at time layer n+1, CD is an operator approximating the

convection and diffusion terms in the energy equation. System 1, 2, 3 is completed by the state
equations for the considered medium

ρn+1
c = ρ

(
pn+1
c , T n+1

c

)
, (4)

Hn+1
c = H

(
pn+1
c , T n+1

c ,Vn+1
c

)
. (5)

Here T n+1
c is the sought-for temperature in a cell center at the given time step.

The methods based on pressure and velocity assume sequential solution of the momentum
and pressure equations. The central idea behind this approach consists in introducing an
intermediate velocity field, which results from integration of the momentum equation

ρn+1
c Ṽc − ρnc Ṽc + τCD

(
Wn

f , Ṽc

)
= −τ∇pn. (6)
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In general case, the obtained velocity distribution Ṽc does not satisfy the continuity equation.
In order to make it conservative, correction must be performed in the cell centers and at the cell
faces:

Wn+1
c ≡ ρn+1

c Vn+1
c = ρ̃cṼc + τ∇pnc − τ∇pn+1

c , (7)

Wn+1

f ≡ ρn+1

f Vn+1

f = ρ̃fṼf + τ∇pnf − τ∇pn+1

f . (8)

The pressure at time layer n+1 is obtained from the pressure equation. The pressure equation
is the result of substituting 7 into the continuity equation:

ρn+1
c − ρnc

τ
+∇F

(
ρn+1
c , Ṽc

)
= τ∇

(
∇fp

n+1 −∇fp
n
)
. (9)

Here F is an operator approximating Wf (the specific mass flow rate through a cell face), ∇f

is the central-symmetric operator approximating the pressure gradient at the cell face using the
pressure values in the neighbor cell centers.

The state equation for density provides the following relationship between density and
pressure

ρn+1
c = ρnc +

dρ

dp

(
pn+1
c − pnc

)
. (10)

Substitute 10 into 9:

dρ

dp

pn+1
c − pnc

τ
+∇F

(
ρnc +

dρ

dp

(
pn+1
c − pnc

)
, Ṽc

)
= τ∇

(
∇fp

n+1
−∇fp

n
)
. (11)

In the case of incompressible flow (∂ρ/∂p = 0), 11 becomes an elliptic equation:

τ∇
(
∇fp

n+1
−∇fp

n
)
= ∇F

(
ρnc , Ṽc

)
. (12)

In the case of compressible flow, 11 becomes a convection-diffusion equation:

dρ

dp

pn+1
c − pnc

τ
+∇F

(
pn+1
c ,

dρ

dp
Ṽc

)
−∇F

(
pnc ,

dρ

dp
Ṽc

)
= τ∇

(
∇fp

n+1
−∇fp

n
)
−∇F

(
ρnc , Ṽc

)
.

(13)

Hence, pressure propagates over the computational domain with finite velocity dρ
dp
Ṽ. Correct

solution of 13 requires the advection operator F to be a high-order monotonous operator.
According to the Godunov theorem, it must be non-linear. This makes 13 non-linear with
respect to pressure. In FlowVision software, this equation is linearized with use of the deferred-
correction method. Explain the method on a simple example. Let we have a high-order linear
operator H which is used for integration of the following equation

fn+1 − fn

τ
+H(fn+1) = 0. (14)

Introduce a linear operator, for instance, the first-order upwind advection operator F1, and
rewrite 14 as follows

fn+1 − fn

τ
+ F1(f

n+1) = F1(f
n+1)−H(fn+1). (15)
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Application of the deferred-correction method to 13 yields the following linear equation for
pressure

dρ

dp

pn+1
c − pnc

τ
+∇F1

(
pn+1
c ,

dρ

dp
Ṽc

)
= τ∇

(
∇fp

n+1
−∇fp

n
)
−

−∇F
(
ρnc , Ṽc

)
−∇F1

(
pnc ,

dρ

dp
Ṽc

)
. (16)

It is known that a non-staggered grid produces oscillations in the solution. The effect is
explained as follows. The discrete momentum equation includes the approximation of the
pressure gradient which does not contain the pressure value in a given cell or contains it
with a very small coefficient. On the other hand, the discrete pressure equation includes the
approximation of the velocity divergence ∇F (ρnc ,V

n
c ) in which the coefficient at the velocity in

the cell is zero or small. Thus, the discrete equations for velocity and pressure are decoupled
in the given cell. This gives birth to so-called checkerboard oscillations. The oscillations are
eliminated by means of extending stencil for 16 - see [12–14]. In connection to the scheme
discussed, this implies that the pressure gradient at time layer n in 8 is approximated with a
higher order of accuracy:

Wn+1

f = −F (ρnc ,V
n
c )− F1

(
pn+1
c ,

dρ

dp
Vn

c

)
− τ∇

(
∇fp

n+1
−∇Hpn

)
. (17)

Here ∇H is a high-order operator. Correspondingly, the pressure equation changes:

dρ

dp

pn+1
c − pnc

τ
+∇F1

(
pn+1
c ,

dρ

dp
Vn

c

)
= τ∇

(
∇fp

n+1
−∇Hpn

)
−

−∇F (ρnc ,V
n
c )−∇F1

(
pnc ,

dρ

dp
Vn

c

)
. (18)

Note, that this way of suppressing oscillations makes a steady-state solution dependent on time
step. Represent ∇H as sum ∇H = ∇f +∇a. Here ∇a is an addition to operator ∇f having a
larger stencil compared to ∇f . To fix thoughts, consider an incompressible flow. In this case,
the steady-state solution of 17 is

Wn+1

f = −F (ρnc ,V
n
c ) + τ∇ap

n. (19)

We can see that a cell face velocity depends on τ . In order to eliminate the solution dependency
on time step, the following expression is used in FlowVision software

Wn+1

f = −F (ρnc ,V
n
c )− F1

(
pn+1
c ,

dρ

dp
Vn

c

)
− τ

(
∇fp

n+1 −∇fp
n − C∇Hpn

)
, (20)

C = min(1, τexpl/τ).

Here τexpl = mini
hi

Vi

is the explicit time step for the advection equation, hi is the size of the i-th
cell, Vi is the modulus of the velocity in this cell.

3. Final notation of modified split algorithm

Step 1: Solve the convection-diffusion equation for pressure:

dρ

dp

pn+1
c − pnc

τ
+∇F1

(
pn+1
c ,

dρ

dp
Vn

c

)
= τ∇

(
∇fp

n+1
−∇fp

n
− C∇Hpn

)
−

−∇F (ρnc ,V
n
c )−∇F1

(
pnc ,

dρ

dp
Vn

c

)
,
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where dρ
dp

is adiabatic compressibility, defined, for instance, like dρ
dp

= 1/a2, where a is speed of

sound. Step 2: Compute conservative (i.e. satisfying the continuity equation) specific mass flow
rates through the cell faces

Wn+1

f ≡
(
ρn+1V n+1

)
f
= −F (ρnc ,V

n
c )− F1

(
pn+1
c ,

dρ

dp
Vn

c

)
− τ

(
∇fp

n+1
−∇fp

n
− C∇Hpn

)
.

Step 3: Compute density

ρn+1
c = ρnc +

dρ

dp

(
pn+1
c − pnc

)
.

This way of computing density provides strict conservation of mass in the computational domain.
Step 4: Solve the momentum equation

ρn+1
c Vn+1

c − ρncV
n
c + τCD

(
Wn+1

f ,Vn+1
c

)
= −2τ∇pn+1 + τ∇pn.

Step 5: Solve the equations for the turbulent characteristics of the flow (if a turbulent flow is
simulated). Solve the convection-diffusion equations for species (if a multi-component flow is
simulated). Solve the energy equation

ρn+1
c Hn+1

c − ρncH
n
c + τCD

(
Wn+1

f ,Hn+1
)
=

pn+1
c − pnc

τ
.

Step 6: temperature and corrected density at time layer n+ 1

T n+1
c = H−1(pn+1

c ,Hn+1
c )

ρ̂n+1
c = ρ(pn+1

c , T n+1
c ).

The accuracy of transient solution at time layer n+1 can be improved by computing adiabatic
compressibility dρ/dp through

dρ

dp
=

ρ̂n+1
c − ρnc

pn+1
c − pnc

.

Then correct density as

ρn+1
c = ρ̂n+1

c ,

and repeating steps 2-6. This option is available in the FlowVision interface.

4. Calculation

4.1. Flow in the Laval nozzle

A 2D (axisymmetric) air flow in the Laval nozzle is considered [15]. The nozzle is a smooth
axisymmetric pipe whose radius R depends on the distance along the axis from the inlet as
follows:

R =

{ √
3.6× 104 − 1.54 × 104 cos ((7.87 × 104 × x− 1)× 3.14), x < 1.27,√
2.57 × 104 − 0.54 × 104 cos ((7.87 × 104 × x− 1)× 3.14), x > 1.27.

The nozzle length is 2.4 m. The inlet pressure is 6895 Pa. The inlet temperature is 125 K.
The outlet pressure is 5171 Pa. The given pressure drop causes a trans-sonic flow in the nozzle.
Calculations in FlowVision software are performed on the grid composed of 5000 cells. The cell
size is around 0.1 m. The time step is τ = 100τexpl, i.e. the CFL number is 100. Though the
CFL number is large, the solution development is stable. The calculations are compared against
the data from internet-resource [16]. Figure 1 shows the Mach number distribution along the
nozzle axis. Figure 2 shows the pressure distribution along the nozzle axis. One can see that
the numerical results agree well with the analytical ones.
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Figure 1. Mach number distribution along the nozzle.

Figure 2. Pressure distribution along the nozzle.

4.2. Hypersonic flow past sphere

Air flow past a sphere is considered. The Mach number is 11.2. The sphere radius is 0.016 m.
The investigation is focused on the new method robustness. Therefore chemical reactions are
not allowed for. An axisymmetric computational domain is used in this study. The 2D grid
consists of 65000 cells. The CFL number equals 10. The corresponding time step provides
stable calculations of the given problem. Note that the classic split method allows calculations
with time steps characterized by CFL ≤ 1. The Mach number distribution around the sphere
is shown in figure 3 In figure 4, the relative pressure distribution over the sphere surface is
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compared against the data computed from modified Newton formula [17]

p′ =
pb
p0

= 1−

(
1.2−

1.5

M2
∞

)
sin2 α+

(
0.27 −

1.5

M2
∞

)
sin4 α. (21)

Here pb is the pressure at the sphere surface, p0 is the pressure at the stagnation point behind
a normal shock wave.

Figure 3. Distribution of the Mach number around sphere.

Figure 4. Pressure distribution over the sphere surface.

5. Conclusions

A new method for numerical integration of the Navier–Stokes equations is presented in the given
paper. The method allows simulation of fluid and gas flows at arbitrary Mach numbers. The
velocity-pressure split approach forms the basis of this method. Compared to the other velocity-
pressure split algorithms, the order of solving the momentum and pressure equations is inverted.
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In the new method, the pressure equation is solved the first. After that the conservative (i.e.
satisfying the continuity equation) mass flow rates through the cell faces are determined. Then
this flow rates are used in solving the momentum equation, the energy equation and the other
convection-diffusion equations constituting the mathematical model of a given flow. Such an
algorithm enables stable calculations with time steps essentially exceeding the explicit time step.
The capabilities of the method are demonstrated on two test cases.
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