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Abstract. Continuum mechanic theories are frequently used to simulate the mechanical
behavior of elastic and viscous materials, specifically soft tissues typically showing
incompressibility, nonlinear deformation under stress, fading memory and insensitivity to the
strain-rate. The time dependence of a viscoelastic material could be better understood by
considering it as composed by an elastic solid and a viscous fluid. Different types of mechanical
devices can be constructed provided a particular configuration of elastic springs and dashpots.
In this work our aim is to probe many of the soft tissue mechanical behavior, by considering
a Kelvin’s device coupled to a set of in parallel Maxwell’s devices. Then, the resulting model
composed of a long series of modified Kelvin bodies must span a broad range of characteristic
times resulting in a suitable model for soft tissue simulation. Under driving static and dynamic
stress applied to a 2-Dim system, its time dependence strain response is computed. We obtain
a set of coupled Volterra integral equations solved via the extended trapezoidal rule scheme,
and the Newton-Raphson method to solve nonlinear coupled equations.

1. Introduction
Modeling the mechanical behavior of soft tissue are relevant for applications in surgical
simulations in real time and fast precise calculations of tissue mechanical deformations [1, 2, 3, 4].
Soft tissue material response to stress achieves large deformations at the beginning of a relatively
stress low level and subsequently stiffening at higher stress level. Their structural composition
of collagen fibers distribution leads to a pronounced anisotropy [5, 6, 7, 8]. Almost all the
biological soft tissues are mechanically less sensitive under different strain rates. Their stress-
strain curve exhibit a hysteresis loop showing a nonlinear stress-strain relationship, and their
hysteresis loop-area does not depend on the strain rate [9, 10, 11].

Viscoelastic materials time behavior are well understood wether considered as an elastic solid
and a viscous fluid. Different types of mechanical devices are constructed provided a particular
arrangement of elastic springs and dashpots [9]. Maxwell and Voigt models supply a logarithmic
functional type relationship between strain-rate and frequency (inverse of the characteristic
time), describing a decreasing curve for the former; while for the latter an increasing curve
is observed. Kelvin’s model strain-rate vs logarithm of the frequency describes a bell-shaped
curve. None of these models are able to present a typical flat strain-rate vs frequency curve
of living tissues. In this work our aim is to probe many of the features of the soft-tissue
mechanical behavior, considering a Kelvin’s device coupled to a set of in parallel Maxwell devices
in 2Dim. The resulting model composed of a long series of modified Kelvin bodies will span a
broad range of characteristic times, becoming a suitable model for soft tissue simulation[9]. In
section 2 we present a mathematical formalism applicable to systems showing fading memory,
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we include an alternative formulation suitable to treat nonlinear elastic materials. The physical
formalism applied to an ensemble of modified Kelvin devices N-Dim network system is presented
in section 3. Results considering a bi-dimensional network are shown in section 4. Conclusions
and perspectives are presented in section 5.

2. Systems with fading memory
In this section we reproduce an established one dimensional model, with a more convenient
notation for our purposes [9]. Consider a single mechanical device consisting of (N + 1) springs
and N dashpots set up in parallel (left side of Figure 1). A force is supposed to cause an
uniaxial deformation on springs identified as stress and an strain (proportional to the spring
constant K) and denoted by σ and u; respectively. Meanwhile into a dashpot, at any instant,
it causes an strain rate α̇ (proportional to the viscosity η). Denoting the spring constants as
Ko and Kn, the dashpot viscosity by ηn (n = 1, 2, . . . , N), its inelastic mechanical response is an
internal variable denoted by α̇n(t). For the viscous stress we have σv(t) =

∑N
n=1 ηn α̇n(t). To

complete the constitutive hypotheses is assumed a linear, elastic, stress-strain spring∑ response.
KSince u(t) is the ∑strain on the spring, Kou(t) = σ(t) − σv(t), thus σ(t) = ˜u(t) − N

n=1 Knαn(t)

where K̃ = Ko +
N
n=1 Kn is the initial modulus, and the internal variables must satisfy the

detailed balance evolution equation, u(t) = τnα̇n(t) + αn(t), with αn(0) = 0 ; n = 1, 2, . . . N and
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Figure 1. Left side: A single modified Kelvin device consisting of N + 1 springs and N dashpots. In
the middle: An structured network consisting of a set of modified Kelvin’s devices. Right side: Neighbors
connectivity graph for the (i j) network link, where nx is the number of arbitrary elements in a row.

τn = ηn/Kn being the relaxation times . Then, αn(t) = u(t)−
∫ t

0
exp[−(t− s)/τn] u̇(s)ds, and we

find

σ(t) =
∫ t
0 G(t− s) u̇(s)ds , G(t) = Ko +

∑N
n=1 Kn exp(−t/τn) . (1)

As a straightforward extension including nonlinear elastic response, we replace the viscous
strain by a stress-like set of internal variables Qn(t) = Knαn(t) ; n = 1, . . . , N , so the stress

Kresponse σ(t) = ˜u(t) −
∑N

n=1 Qn(t). By defining the nondimensional relative moduli becomes
γo = Ko/K̃, γn = Kn/K̃ ; n = 1, . . . , N , (γo +

∑N
n=1 γn = 1) and the initial store energy function
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chemical energy rate canceling [9], the equation of motion is given by

mq̈(t) +
∂U
∂ q

− F e = 0 , (3)

where F e is the external force on the device. From the results on section 2, this equation of
motion yields a typical equation with fading memory [9],

mq̈(t) +

∫ t

0
dsG(t− s)q̇ − F (e) = 0 . (4)

Now we propose the following model for an ensemble of l connected modified Kelvin’s devices,
by generalizing the storage energy as,

U = 1/2
l∑

(i,j)=1

Ko
ij qiqj + 1/2

l∑
(ij)=1

N∑
n=1

Kn
ij(qi − αi,n)(qj − αj,n) .

The equation of motion is straightforward, for (i, j) = (1, 2, . . . , l),

miq̈i(t) +
∑l

j=1

∫ t

0
dsGij(t− s)q̇j − F

(e)
i = 0 , Gij(t) = K̃ij

[
γij
o +

∑N
n=1 γ

ij
n exp (−t/τn)

]
, (5)

with γij
o = Ko

ij/K̃ij and γij
n = Kn

ij/K̃ij. Although U(q) may be a nonlinear function of strain, the
relaxation process is linear ( a quasi-linear viscoelastic theory) .
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Figure 2. Left side: Loss and storage modulus as a function of the strain-frequency. The storage
modulus is represented by continuous lines, the loss modulus is in long dotted line showing a flat curve
reproducing soft tissue insensitivity to the strain-rate. Right side: A typical creep viscoelastic behavior
for the network system.

Kas U(u) = 1/2 u ˜ u, the model is recasted in the following form:

σ(t) = ∂
∂uU(u) −

∑N
n=1Qn , ∂

∂uU(u) = γ
τnQ γn

˙
n + 1

n
Qn . (2)
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Figure 3. Left side: A typical hysteresis curve for 2-Dim network system. Right side: A color intensity
stress-deformation for a 20× 20 square network.

4. Numerical results
For a two dimensional network of size nx × ny structured as in the middle of Figure 1, where
each link (i j) being one modified Kelvin device with preset relaxation times τn, a single relative
moduli γi jo and γn

ij = (1 − γi j
o )/N ; for n = 1, 2, . . . , N (independent of i and j). We consider the

connectivity between neighboring elements (six), as shown in the right side of Figure 1. In the overdamped
regime (miq̈i ≈[0), and by inttegra y parts Eqn. 5, we obta n the following expression for the i-th

particle :
∑6

j=1 Gi j(0) δr i j −
∫egt
0
K̃i j

t ∑b
N
n=1

γi
n
j

τn
e−(t−s)/τnδr i j ds

i]
= F⃗i

e. The summation is carried over

all six neighbors: j1 = i− nx− 1, j2 = i− nx, j3 = i− 1, j4 = i+ 1, j5 = i+ nx, j6 = i+ nx+ 1, with
i = 1, . . . , ny; δ ri j are the relative displacements (chosen to be quadratic [9]) between neighbors (i j) and

we set K̃i j to be unity . The resulting coupled system of Volterra integral equations are nonlinear. These
are solved via extended trapezoidal rule scheme, and the Newton-Raphson method to solve nonlinear
equations [13]. We consider N = 6 dashpots with different τn = 3n and γo = 0.25, for a network of
20× 20 links.

We compute: a) the response of the system to a dynamic oscillatory strain Fi
e = cosω t, b) the

energy stored due to the applied strain (storage modulus) and c) the dissipation energy as determined
by the strain-rate (loss modulus). In Figure 2, left side, it is shown both the loss and storage modulus
behavior vs the inverse of the relaxation time, in the range (0.0, 6.0)Hz. The loss modulus is represented
by the curve in long dotted lines showing a plateau that resembles insensitivity to the strain-frequency.
The storage modulus is represented by and increasing continuous curve until it reaches a constant value;
delimiting the viscous region. Next we computed the systems response to a cyclic suddenly applied stress
(step function). The procedure results in an instantaneous elastic deformation followed by a delayed
time-dependent deformation; i.e. the creeping effect. This is shown in Figure 2, right side, where the
applied stress is hold for ≈ 80 sec, while the strain response is pre-set to be linear. Then it is observed an
instantaneous elastic deformation ≈ 6× 10−4 units, followed by a delayed time-deformation in the range
(0, 40) sec and a delayed time-recovery in a range of (40, 80) sec. Finally, we considered the response of
the system to a cyclic stress linearly increasing and decreasing with slope ± 1/2π during successive time
intervals and considered pre-set quadratic deformations. In Figure 3, left side, is plotted the deformation
history curve for the elastic viscous deformation. Next, in Figure 3, right side, it is presented a typical
intensity color stress deformation for the present network. The plot shown that the relative strain
distributed on the network increases from the blue to the red color.
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5. Conclusions and perspectives
This model reproduces soft tissue mechanical behavior as it is numerically verified by simulated
mechanical test. Storage-loss modulus, creeping and hysteresis are common features of viscoelastic
mechanical behavior. It is remarkable that the model is capable to compute efficiently nonlinear elastic
deformations in real time. It seems that methods based on continuum mechanics are more realistic than
their spring-mass viscoelastic counterpart. However, the latter can be faster than the former, therefore
more suitable for real time applications. It is curious that quasi-linear viscoelastic formulation is based on
the assumption that the viscous stress is related to linearly superposed strain rates. Similar constitutive
relations are also useful in a continuum mechanics formulation. There is not an exhaustive comparison
between this two alternative approaches, when attempted in applications relying on advantages and
precision [14]. The model presented here is appropriated to describe the viscoelastic behavior of bubbles
foams, useful when studying microfluidics [15].
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