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Abstract. Contrary to the common lore based on naive dimensional analysis, the seesaw
scale for neutrino masses can be naturally in the TeV range, with small parameters coming from
radiative corrections. We present one such class of type-I seesaw models, based on the left-right
gauge group SU(2)L × SU(2)R × U(1)B−L realized at the TeV scale, which fits the observed
neutrino oscillation parameters as well as other low energy constraints. We discuss how the
small parameters of this scenario can arise naturally from one loop effects. The neutrino fits
in this model use quasi-degenerate heavy Majorana neutrinos, as also required to explain the
matter-antimatter asymmetry in our Universe via resonant leptogenesis mechanism. We discuss
the constraints implied by the dynamics of this mechanism on the mass of the right-handed
gauge boson in this class of models with enhanced neutrino Yukawa couplings compared to the
canonical seesaw model and find a lower bound of mWR ≥ 9.9 TeV for successful leptogenesis
assuming maximal CP asymmetry for each flavor. We also present a model with explicit neutrino
mass fit, where the lower bound goes up to 13.1 TeV due to less than maximal primordial CP
asymmetry predicted by the model.

1. Introduction
The seesaw mechanism [1] seems to provide a simple way to understand the smallness of neutrino
masses. The simplest among the various seesaw mechanisms is the type-I seesaw, which requires
the introduction of Standard Model (SM) gauge-singlet right-handed (RH) neutrinos (N ’s). The
Majorana mass MN of these RH neutrinos explicitly breaks the global B − L symmetry of the
SM by two units and gives rise to a light neutrino mass matrix of the form

Mν ' −MDM
−1
N MT

D , (1)

where MD is the Dirac mass generated due to the neutrino Yukawa couplings Yν after the
electroweak symmetry breaking. If one assumes maximal allowed values for the third-generation
Dirac mass MD,33, as is implied by certain Grand Unified Theories such as SO(10), then the
seesaw scale is pushed up to ∼ 1014 GeV making it virtually inaccessible to both collider
experiments at the energy frontier and other low energy searches at the intensity frontier.
Such naive (“dimensional counting”) considerations however can be misleading in the context
of specific ultraviolet (UV) complete seesaw models where there may be dynamical suppressions
of neutrino Dirac masses. One class of such models that are based on the SM gauge group
generally go by the name of radiative seesaw models; see e.g. [2]. Within the type-I seesaw
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framework, there exists another possibility to suppress the light neutrino masses by assigning
specific textures to the Dirac and Majorana mass matrices in the seesaw formula [3, 4]. The
stability of these textures can in principle be guaranteed by enforcing some symmetries in the
lepton sector.

Extending the SM gauge group to the Left-Right (L-R) Symmetric gauge group SU(2)L ×
SU(2)R × U(1)B−L provides a simple UV-complete seesaw model [5]. Here, the RH neutrinos
are a necessary part of the model and do not have to be added ‘by hand’ just to implement
the seesaw mechanism. An important point is that the RH neutrinos acquire a Majorana mass
as soon as the SU(2)R symmetry is broken at a scale vR. This is quite analogous to the way
the charged fermions get masses in the SM by the Higgs mechanism when the SU(2)L gauge
symmetry is broken at a scale v. The Higgs field that gives mass to the RH neutrinos becomes
the analogue of the 125 GeV Higgs boson discovered at the LHC.

In this proceedings, we focus on a new class of L-R seesaw models [6], where in addition to
the RH gauge bosons as well as other Higgs fields, light (TeV scale) RH neutrinos with sizable
mixing with the left-handed (LH) neutrinos may be accessible at colliders and other low energy
experiments (for a review, see e.g. [7]). With the LHC ramping up to a higher center of mass
energy

√
s = 13 TeV and later to 14 TeV, our model as well as other low scale seesaw models,

should provide motivation for testing the origin of neutrino mass in the coming years. For the
collider phenomenology of TeV-scale LRSM, see e.g. [8, 9, 10], and for the current experimental
status, see [11]. Such considerations should also be of interest [12] for setting physics goals for
future higher energy colliders such as the

√
s = 80 or 100 TeV VLHC [13]. It is also important

to mention here that the new class of L-R seesaw models with relatively large left-right neutrino
mixing can be distinguished from the minimal LRSM using different kinematic variables [10, 14].

An attractive consequence of the seesaw mechanism is the possibility that it could solve
another important puzzle of cosmology, i.e. the origin of matter-antimatter asymmetry in our
Universe, via a mechanism called leptogenesis [15]. At the heart of this mechanism is the out-
of-equilibrium decay of the RH Majorana neutrinos via the decay modes N → LΦ, LcΦc (where
the superscript c denotes the CP -conjugate), which violate L, C and CP , thereby dynamically
generating an asymmetry in the lepton sector. This primordial lepton asymmetry undergoes
thermodynamic evolution as the Universe expands and finally gets converted to a baryon
asymmetry via equilibrated electroweak sphaleron interactions [16]. The attractive aspect of
this mechanism is that the same Yukawa couplings Yν that give rise to neutrino masses via
the seesaw mechanism in Eq. (1) are also responsible for the origin of matter, thus implying
an intimate connection between two seemingly disparate pieces of evidence for beyond the SM
physics. This beautiful idea can be tested, provided the seesaw scale, and hence, the scale at
which leptogenesis takes place, is accessible to current and near future laboratory experiments.
Low-scale leptogenesis is possible when at least two RH Majorana neutrinos have a small
mass difference comparable to their decay widths, thus resonantly enhancing the ε-type CP
asymmetry [17, 18] due to RH neutrino self-energy effects [19].

An important question to explore is whether the leptogenesis mechanism works in a TeV-scale
realization of L-R seesaw, or in other words, whether it is possible to falsify the leptogenesis
mechanism if a RH gauge boson is discovered at the LHC. This problem was analyzed in detail
in Ref. [20] and it was pointed out that the additional dilution and washout effects on the lepton
asymmetry due to WR-mediated ∆L = 1 scattering processes become important for a TeV-scale
L-R seesaw. Since in generic versions of the seesaw model, sub-eV neutrino masses would require
the Dirac Yukawa couplings to be Yν . 10−11/2, the washout effects would lead to an efficiency

factor κ ∼
Y 2
νM

4
WR

g4RM
4
N

(gR being the SU(2)R gauge coupling, which is assumed to be equal to the

SU(2)L gauge coupling in the minimal scenario) which is too small for a low-scale leptogenesis to
work. Through a detailed analysis of the relevant Boltzmann equations, it was concluded in [20]
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that even for maximal CP -asymmetry ε ∼ O(1), the observed value of the baryon asymmetry can
be explained by leptogenesis in these L-R models, only if mWR

≥ 18 TeV. Turning this argument
around, if a positive signal for WR is observed at the LHC, this will falsify leptogenesis as a
mechanism for understanding the origin of matter in L-R seesaw framework. Since this is such
an important issue, we have reanalyzed this [21] to examine the robustness of the lower bound on
mWR

and to investigate if there exists any allowed parameter space with successful leptogenesis
for smaller values of mWR

. We find that for the generic class of L-R seesaw models with large
light-heavy neutrino mixing, successful leptogenesis requires mWR

≥ 9.9 TeV for the maximal
CP asymmetry. For illustration, we will present an explicit neutrino mass fit which satisfies
the observed baryon asymmetry. The main new results presented here should supersede those
reported in [21].

This proceedings is organized as follows: in Section 2, we review the basic features of the
generic L-R seesaw models as well as our new L-R seesaw model with special Dirac and Majorana
textures resulting in light neutrinos via type-I seesaw with large light-heavy neutrino mixing
generated in a natural manner. In Section 3, we present an alternative neutrino mass fit relying
on cancellations in the seesaw formula. In Section 4, we discuss resonant leptogenesis in this
model and the impact of a TeV-scale WR on the lepton asymmetry. Our conclusions are given
in Section 5.

2. A TeV-scale left-right seesaw model
In the minimal L-R symmetric model (LRSM), the fermions are assigned to the gauge group
SU(2)L × SU(2)R × U(1)B−L as follows: denoting Qi ≡ (u, d)Ti and ψi ≡ (νl, l)

T
i as the quark

and lepton doublets of the ith generation respectively, QL,i and ψL,i (also denoted simply by
Li) are assigned to doublets under the SU(2)L group, while QR,i and ψR,i (also denoted by Ri)
as the doublets under the SU(2)R group. The Higgs sector of the model can consist of one or
several bidoublets φa and triplets ∆R,b:

φ ≡
(
φ0

1 φ+
2

φ−1 φ0
2

)
, ∆R ≡

(
∆+
R/
√

2 ∆++
R

∆0
R −∆+

R/
√

2

)
. (2)

The gauge symmetry SU(2)R × U(1)B−L is broken by the vacuum expectation value (VEV)
〈∆0

R〉 = vR to the group U(1)Y of the SM. The LH counterpart (∆L) to ∆R is not considered
here, assuming that parity and SU(2)R gauge symmetry scales are decoupled. In this case, the
∆L fields become heavy when the discrete parity symmetry is broken, and disappear from the
low energy theory [22]. The VEV of the φ field given by 〈φ〉 = diag(κ, κ′) breaks the SM gauge
group to U(1)em. The fermion masses are obtained from the following Yukawa Lagrangian:

−LY = hq,aij Q̄LiφaQR,j + h̃q,aij Q̄L,iφ̃aQR,j + hl,aij L̄iφaRj

+ h̃l,aij L̄iφ̃aRj + fij(R
T
i Ciτ2∆RRj + LT

i Ciτ2∆LLj) + H.c., (3)

where φ̃ = τ2φ
∗τ2 (τ2 being the second Pauli matrix). After electroweak symmetry breaking, the

Dirac fermion masses are given by the generic formula Mf = hfκ+ h̃fκ′ for up-type fermions,
and for down-type quarks and charged leptons, it is the same formula with κ↔ κ′. The Yukawa

Lagrangian (3) leads to the Dirac neutrino mass matrix MD = hlκ + h̃lκ′ and the Majorana
mass matrix for the heavy RH neutrinos MN = fvR which go into the seesaw formula (1) for
calculating the neutrino masses and the heavy-light neutrino mixing.

Since the Higgs sector relates the neutrino Yukawa couplings with the charged-lepton ones in
the LRSM , it is interesting to see how a TeV-scale L-R seesaw can be realized in Nature. There
are essentially three ways to do so: (i) by choosing one set of Yukawa couplings to be . 10−11/2

for a particular VEV assignment for the bidoublet Higgs fields; (ii) by choosing particular
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symmetry-motivated textures for the Yukawa couplings which ensure that the leading order
seesaw contribution to neutrino masses vanish; and (iii) by choosing large Yukawa couplings as
allowed by specific textures and invoking cancellations in the seesaw formula (1). The strategy
(i) with small Yukawa couplings does not lead to any new interesting phenomenology over the
minimal LRSM. Therefore, we will focus on strategies (ii) and (iii) in the following sections, and
in particular, use strategy (iii) for our numerical analysis for the calculation of lepton asymmetry.
A similar analysis can be performed following strategy (ii) as well. For the phenomenological
implications of this new class of L-R seesaw models, see e.g. [6, 10].

2.1. A symmetry-protected L-R seesaw with large light-heavy neutrino mixing
As mentioned above, the basic strategy for understanding small neutrino masses with a low-scale
type-I seesaw is to have the appropriate textures for MD and MN in Eq. (1). There are several
examples of this type [3, 4] in the context of the minimal seesaw extensions of the SM. Here, we
discuss the embedding of one such texture (from Ref. [3]) in the L-R model using an appropriate
family symmetry [6]. The symmetry must not only guarantee the special leptonic textures but
also must be free of light scalar bosons which can result if the effect of the discrete symmetry is
to automatically lead to a U(1) symmetry. Moreover in LRSM, the charged-lepton mass matrix
Ml is related to MD which puts additional constraints on phenomenological viability of the
model. Therefore, we find it remarkable that the model presented below remains a viable TeV-
scale L-R type-I seesaw model for neutrinos, and as a result, has interesting phenomenological
implications beyond the minimal LRSM.

The Dirac and Majorana mass matrices MD and MN considered here have the following form:

MD =

 m1 δ1 ε1
m2 δ2 ε2
m3 δ3 ε3

 , MN =

 δM M1 0
M1 0 0
0 0 M2

 , (4)

with εi, δi � mi and δM � Mi. In the limit of εi, δi, δM → 0, the neutrino masses vanish,
although the heavy-light mixing parameters given by ξij = mi/Mj can be quite large. The
light neutrino masses given by the seesaw formula (1) become proportional to either εi, δi or
their products. If the smallness of δi and εi can be guaranteed by some symmetry, then we
have a “natural” TeV-scale seesaw model with tiny neutrino masses. As we show below, the
mass textures (4) can be successfully embedded into the L-R framework, while satisfying all
current experimental constraints. Note that the choice of texture for the RH neutrino mass
matrix in Eq. (4) is necessary to keep the model compatible with strong bounds from tree-level
µ− → e−e+e− decay via TeV-scale ∆R exchange [21].

In order to obtain the special Dirac and Majorana textures given in Eq. (4), we supplement
the L-R gauge group SU(2)L × SU(2)R × U(1)B−L with a global discrete symmetry D ≡
Z4 ×Z4 ×Z4 [6]. For the Higgs sector, we choose three bi-doublets (φ1,2,3) with B −L = 0 and
two RH triplets (∆R,1,∆R,2) with B − L = 2. The fermion and Higgs multiplets are assigned
the D quantum numbers as shown in Table 1. The leptonic part of the Yukawa Lagrangian (3)
invariant under the D-symmetry is given by

−Ll,Y = hi1L̄iφ̃1R1 + hi2L̄iφ2R2 + hi3L̄iφ3R3 + f12R1R2∆R,1 + f33R3R3∆R,2 + H.c. (5)

In the symmetry limit, the VEVs of φ2,3 have the form 〈φa〉 = diag(0, κ′a). This is because the

terms of the form Tr(φ̃aφ
†
b) which would change the φ VEV to the form diag(κ, κ′) are forbidden

by the D-symmetry from appearing in the scalar potential. Thus in the symmetry limit, the
MD elements in one column are big and non-zero, and the charged lepton mass matrix has one
eigenvalue zero which can be identified as the electron flavor. The RH neutrino Majorana mass
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Field Z4 × Z4 × Z4 transformation
L1,2,3 (1, 1, 1)
R1 (−i, 1, 1)
R2 (1, − i, 1)
R3 (1, 1, − i)
φ1 (−i, 1, 1)
φ2 (1, i, 1)
φ3 (1, 1, i)

∆R,1 (i, i, 1)
∆R,2 (1, 1, − 1)

Table 1: The discrete symmetry assignments for the fermion and Higgs fields in our L-R model
that lead naturally to the special Dirac and Majorana textures given in Eq. (4) [6].

matrix has the form in Eq. (4) with δM = 0. To make the model realistic, we add small soft
symmetry-breaking terms of the form

δV (φ) =
∑
a,b

µ2
abTr(φ̃aφ

†
b) + H.c. (6)

to the scalar potential. This will induce the φa VEVs of the form 〈φa〉 = diag(δκa, κ
′
a), where

δκa ∝
∑

b µ
2
abκ
′
b∑

a,b λ
′
abκ
′
aκ
′
b +

∑
a λav

2
R,a

, (7)

with λ, λ′ respectively being the scalar self-couplings of the bidoublet and triplet fields in the
scalar potential. Choosing appropriately small µ2

ab, we can get very small δκa as required to
satisfy the neutrino oscillation data.

2.2. Naturalness of small δκ
It is possible to generate the small parameters δκa naturally through loop effects involving the
WL −WR mixing. To explain this, first we note that if in a L-R model, δκ’s are set to zero in
a natural manner, it will lead to zero WL −WR mixing. By the same token, when WL −WR

mixing is nonzero, it will induce a nonzero δκ. Thus there is an intimate connection between
δκ and WL−WR mixing. In our model discussed above, δκ = 0 is guaranteed by (Z4)3 discrete
symmetry. However, if bi-doublets are used to generate quark masses, it is not possible to set
either κ or κ′ to zero, since in that case the symmetry that stabilizes the vanishing of κ or κ′

makes it impossible to get realistic quark masses and mixing. Once in the quark sector both
κ and κ′ are set to nonzero values, they will induce tree level WL − WR mixing and hence
arbitrary δκ 6= 0 at the tree level in the leptonic sector, thus invalidating the naturalness of the
whole scenario. There is however an alternative way to get quark flavor pattern right without
introducing bidoublet Higgs fields and thereby avoiding nonzero WL −WR mixing at the tree
level. If we introduce SU(2)L,R singlet vector-like up (U) and down (D) quarks, and only LH
and RH doublet Higgs fields χL,R with nonzero VEVs which give mass to the quarks via a quark
seesaw mechanism as in [23], it keeps the δκ’s naturally small. To briefly introduce the quark
seesaw, we write the Yukawa interactions responsible for fermion masses in this model as

−LY = YuQ̄Lχ̃LUR + YdQ̄LχLDR + (L↔ R) + ŪLMUUR + D̄LMDDR + H.c. . (8)
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where χ̃L,R = iτ2χ
∗
L,R. This leads to generic seesaw type quark mass relations, e.g.

Mu ' −
Y 2
u vLvR
2MU

. (9)

The leptonic sector bidoublets do not couple to the quark sector due to the (Z4)3 discrete
symmetry under which the quark sector fields are singlets. As a result, the WL −WR mixing is
zero also in the quark sector, and hence, δκ is not induced at the tree level. However, WL−WR

mixing is induced at the one loop level via the exchange of top and bottom quarks in the quark
sector (see Figure 1), which in turn induces leptonic δκ at the two loop level from the gauge

interaction gLgRφ
0†
1 φ

0
2W

+
LW

−
R in the notation of Eq. (2). This makes δκ finite and small, thus

keeping the model technically natural.

Figure 1: One loop graph for WL −WR mixing in the quark seesaw model. The crosses in the
middle of the two quark propagators are for the vectorlike quark mass insertions, while the other
four crosses denote the mixing between the vectorlike quarks and SM quarks.

An important point to notice is that δκa’s are responsible for the electron mass as well as
neutrino masses via type-I seesaw. Thus getting a fit to the observed neutrino masses and mixing
while at the same time keeping electron mass at its desired value is a nontrivial task since in
the lepton sector, the model has only 14 free parameters (9 Yukawa couplings, 3 Majorana mass
parameters and two VEVs) to start with. One can always go to a basis where MD takes an
upper-triangular form, in which case the number of free parameters reduces to 11. Out of this
11 model parameters, we must not only get fits for the three charged lepton masses, the two
neutrino mass-squared differences and three mixing angles (total of 8 outputs), but must also
satisfy the unitarity constraints on the new light neutrino mixing matrix as well as constraints
from rare lepton decays which involve only the RH mixing matrix for charged leptons. It was
explicitly shown in [6] that this model does indeed provide a fit to all observables while satisfying
all the necessary constraints.

3. An alternative neutrino mass fit
In this section, we discuss neutrino fit in a model with MD and MN texture as given in Eq. (4)
without worrying about its origin from discrete symmetries and use this fit in the subsequent
section for the discussion of leptogenesis. We consider a minimal scenario with only one bidoublet
φ and a single right-Higgs triplet ∆R to illustrate the fit. Clearly, in this case we will have to
adjust parameters to get the desired fermion mass textures.

In this class of L-R models, we can always choose a basis of the LH sector prior to
SU(2)L × U(1)Y breaking such that the Dirac mass matrix MD can be written in an upper-
triangular form without affecting the RH neutrino texture. In this basis, the mass matrices
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obtained from the Yukawa Lagrangian in Eq. (3) are given by

Ml =

 h11κ
′ + h̃11κ

∗ h12κ
′ + h̃12κ

∗ h13κ
′ + h̃13κ

∗

|κ′|2−|κ|2
κ′∗ h21 h22κ

′ + h̃22κ
∗ h23κ

′ + h̃23κ
∗

|κ′|2−|κ|2
κ′∗ h31

|κ′|2−|κ|2
κ′∗ h32 h33κ

′ + h̃33κ
∗

 , (10)

MD =

 h11κ+ h̃11κ
′∗ h12κ+ h̃12κ

′∗ h13κ+ h̃13κ
′∗

0 h22κ+ h̃22κ
′∗ h23κ+ h̃23κ

′∗

0 0 h33κ+ h̃33κ
′∗

 , (11)

MN =

 δM f12vR,1 0
f12vR,1 0 0

0 0 2f33vR,2

 , (12)

Note that since parity is a broken symmetry in this low energy version, we need not have the
Yukawa couplings hij to satisfy hermiticity. We choose the parameters of the model, i.e. hij ’s
and κ, κ′ such that all the experimental constraints in the lepton sector are satisfied. As an
example fit, we consider the mass matrices of the following form:

Ml =

 0.00120 −0.0507 −1.41
0 0.0929 −0.657
0 0 −0.861

GeV, (13)

MD =

 0.0676 ei0.557π −1.06× 10−7 e−i0.557π −1.06× 10−4

0 1.95× 10−7 e−i0.557π −4.78× 10−5

0 0 −6.38× 10−5

GeV, (14)

MN =

 2.59× 10−6 585 0
585 0 0
0 0 −585

GeV, (15)

In addition, we choose the VEVs κ = 6.46 GeV and κ′ = 173.88 ei0.700π GeV, which satisfy
|κ2|+ |κ′2| = v2 with v = 174 GeV. These are all the input parameters for the model. The Ml

is diagonalized by a bi-unitary transformation: M̂l = (V L
l )†MlV

R
l , where

V L
l = i

 0.426 0.436 0.793
0.232 −0.900 0.369
−0.875 −0.0271 0.484

 , V R
l = i

 1.00 0.00495 0.000535
0.00495 −1.00 −0.00332
0.000519 0.00332 −1.00

 . (16)

The light neutrino mass matrix Mν is diagonalized by a unitary transformation: M̂ν = V T
ν MνVν ,

where

Vν =

 0.338i −0.0149 0.941
0.742i 0.619 −0.257
−0.579i 0.785 0.221

 . (17)

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix is then given by

VPMNS = (V L
l )†Vν =

 0.823 0.549 0.148
−0.505 0.585 0.635
0.262 −0.597 0.758

 1 0 0
0 i 0
0 0 −i

 , (18)

The resulting neutrino masses and mixing angles as well as the charged-lepton masses are given
in Table 2.
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Parameter Value
me 0.511 MeV
mµ 106 MeV
mτ 1.78 GeV
mν1 6.49× 10−3 eV
mν2 1.08× 10−2 eV
mν3 5.02× 10−2 eV
θ12 33.7◦

θ23 40.0◦

θ13 8.51◦

mN1 585 GeV
mN2 585 GeV
mN3 585 GeV

Table 2: Masses and mixing angles calculated from the mass matrices given by Eqs. (13)-(15).
The mass splitting between the RH neutrinos is of order of δM ∼ 10−6 GeV.

Since Ml = hκ′ + h̃κ∗ and MD = hκ+ h̃κ′∗, the Yukawa couplings h, h̃ are easily calculated
using VEV’s chosen as above, and they are found to be

h =

 −(0.15 + 1.98i)× 10−5 (1.72 + 2.36i)× 10−4 (4.77 + 6.57i)× 10−3

0 −(3.14 + 4.33i)× 10−4 (2.22 + 3.06i)× 10−3

0 0 (2.91 + 4.01i)× 10−3

 , (19)

h̃ =

 −(2.69 + 2.81i)× 10−4 1.08× 10−5 3.02× 10−4

0 −1.99× 10−5 1.41× 10−4

0 0 1.84× 10−4

 . (20)

The leptonic CP asymmetry generated by the RH neutrino decays is governed by these Yukawa
couplings. If we assume that the two SM doublets in the LR bi-doublet i.e. φ1 and φ2 are
approximate mass eigenstates with mφ1 > mN > mφ2 , the dominant contribution to the CP
asymmetry comes solely from the self-energy correction by the φ2-loop to the decay process
N → φ2Ll. Therefore, only the Yukawa coupling matrix h̃ determines the flavor effect in RH
neutrino interactions relevant to resonant leptogenesis.

The RH neutrino mixing effect at resonance can be captured by the one-loop resummed
Yukawa couplings [18]. Explicitly, in the heavy-neutrino mass eigenbasis, we obtain for the

resummed Yukawa couplings ĥlα and their CP -conjugates ĥclα the following values:

ĥ =

 (−2.52 + 1.03i)× 10−4 (2.39 + 1.00i)× 10−4 (−0.03 + 3.46i)× 10−4

−(2.82 + 5.07i)× 10−5 (4.37− 3.68i)× 10−5 (−0.08 + 1.49i)× 10−4

−(3.63 + 4.69i)× 10−5 (3.77− 4.89i)× 10−5 (0.00 + 1.84i)× 10−4

 , (21)

ĥc =

 −(1.59 + 1.26i)× 10−4 (1.40− 1.25i)× 10−4 (1.02− 7.03i)× 10−5

(2.71 + 4.90i)× 10−5 (−1.57 + 3.67i)× 10−5 (0.02− 1.39i)× 10−4

(3.62 + 4.70i)× 10−5 (−3.78 + 4.88i)× 10−5 (0.00 + 1.84i)× 10−4

 . (22)

The heavy neutrino decay rates for the Yukawa-mediated two-body processes Nα → Llφ, L
c
lφ
c

are calculated with these resummed Yukawa couplings:

Γ(Nα → Llφ) =
mNα

16π
ĥlαĥ∗lα , Γ(Nα → Lclφ

c) =
mNα

16π
ĥclαĥc∗lα . (23)

which are crucial parameters for the calculation of lepton asymmetry, as we will see in the next
section.
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4. Resonant leptogenesis with TeV-scale WR

As eluded to above, for low scale seesaw models, a simple way to generate enough lepton
asymmetry is to use resonant leptogenesis [17, 18]. It requires at least two RH neutrinos to
be nearly degenerate, which is guaranteed in our model by the choice of the texture in the RH
neutrino mass matrix given by Eq. (12). Thus, in addition to guaranteeing suppression of lepton
flavor violating processes such as µ → 3e, this choice of RH neutrino texture also provides a
necessary condition for resonant leptogenesis. As far as the Dirac neutrino mass matrix MD is
concerned, we choose the pattern given in Eq. (11) so that it fits neutrino oscillation data. Since
our focus is on the feasibility of low scale leptogenesis in a realistic model for neutrinos, we do
not stress here on the naturalness of the texture, although a similar exercise can be performed
with the fit presented in Section 2.1. The details of leptogenesis in this class of models was
discussed in [21] and we do not repeat the basic equations here. However, we have extended the
work of [21] and also present here some revised numerical results due to a computational error
in the code used there.

The basic steps in our analysis are as follows: first we calculate the flavored CP asymmetry

εlα =
1

ΓNα
[Γ(Nα → Llφ)− Γ(Nα → Lclφ

c)] , (24)

where the partial decay widths are given by Eq. (23) and the total decay width is given by

ΓNα =
∑
l

[Γ(Nα → Llφ) + Γ(Nα → Lclφ
c)] + 2 Γ(Nα → lRqRq̄

′
R) . (25)

Note that in LRSM, there is an additional contribution to the total decay width due to the
three-body decay mediated by WR:

Γ(Nα → lRqRq̄
′
R) = Γ(Nα → l̄Rq̄Rq

′
R) =

3g4
R

29π3m3
Nα

∫ m2
Nα

0
ds

m6
Nα
− 3m2

Nα
s2 + 2s3

(s−M2
WR

)2 +M2
WR

Γ2
WR

, (26)

where ΓWR
' (g2

R/4π)MWR
is the total decay width of WR, assuming that all three heavy

neutrinos are lighter than WR. The CP asymmetry (24) in our case is determined by the RH
neutrino texture, specifically, the magnitudes ofM1,2 and δM in Eq. (4) as well as the magnitudes
of the Yukawa couplings, and these parameters are constrained by the neutrino fit.

The second step in our calculation is to calculate the thermodynamic evolution of the
normalized heavy neutrino and lepton doublet number densities ηNα and η∆L

l respectively, where
ηX ≡ nX/nγ and nγ = 2m3

N1
ζ(3)/(π2z3) is the photon number density, ζ(x) being the Riemann

zeta function. For simplicity and for a fair comparison with the results of [20], here we use the
flavor-diagonal Boltzmann equations [24]1:

dηNα
dz

= −
(
ηNα
ηNeq

− 1

)
(Dα + Sα) , (27)

dη∆L
l

dz
=
∑
α

εlα

(
ηNα
ηNeq

− 1

)
D̃α −

2

3
η∆L
l Wl , (28)

where z = mN1/T is a dimensionless variable (T being the temperature of the Universe) and
ηNeq ≡ nNeq/n

γ = z2K2(z)/2ζ(3) is the heavy neutrino equilibrium number density, Kn(x) being

1 Including flavor off-diagonal effects could lead to additional enhancement of the final lepton asymmetry [25].
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Figure 2: Evolution of γ/(nNeqH) [left panel] and γ/(nleqH) [right panel]. For the latter, we have

also included the scattering rate of W+
R l
−
R → W−R l

+
R with m∆++ = 10 TeV and mWR

= 13.1
TeV.

the n-th order modified Bessel function of the second kind. The various decay (Dα, D̃α),
scattering (Sα) and washout (Wl) rates appearing in Eqs. (27) and (28) are given by

D̃α =
z

nγHN

∑
k

γ̃Dkα, (29)

Dα =
z

nγHN

∑
k

γDkα, (30)

Sα =
z

nγHN

∑
k

(γSLkα + γSRkα ), (31)

Wl =
z

nγHN

[∑
α

(
Blα

∑
k

γDkα + γ̃SLlα + γ̃SRlα

)
+
∑
k

(
γ

(∆L=2)
lk + γ

(∆L=0)
lk

)]

≡ 1

2ζ(3)
z3K1(z)Keff

l (z) , (32)

where HN ≡ H(z = 1) ' 17m2
N1
/MPl is the Hubble parameter at z = 1, assuming only SM

degrees of freedom in the thermal bath, MPl = 1.2 × 1019 GeV is the Planck mass and Blα is
the branching fraction of the RH neutrino decays relevant for the generation of CP asymmetry:

Blα =
1

ΓNα
[Γ(Nα → Llφ) + Γ(Nα → Lclφ

c)] . (33)

The various γ’s appearing in Eqs. (29)-(32) represent the reaction rates that involve the RH
neutrino decays and inverse decays as well as other 2 ↔ 2 scattering processes in the model
(see Appendix A). Only the two-body decays of the RH neutrinos involving complex Yukawa
couplings are responsible for building up the asymmetry, whereas all other processes lead to
washout effects.

We present in Figure 2 the evolution of the various collision rates as given in Appendix A.
The left panel of the Figure is relevant to the first Boltzmann equation (27), while the second
one is relevant to (28). The vertical dashed line shows the critical value z = zc beyond which the
sphaleron processes become ineffective. The horizontal dashed line is shown for easy comparison
with the Hubble rate. Here we have used mWR

= 13.1 TeV which is the lowest value of mWR

we found in this model with an explicit neutrino fit that satisfies the leptogenesis constraints.
Recently, it was pointed out [28] that the scattering process W+

R l
−
R →W−R l

+
R mediated by the

doubly-charged component of the RH triplet ∆++
R might spoil leptogenesis, if mWR

and m∆++
R
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Figure 3: Various reaction rates γ(zc)/[n
eq
l (zc)H(zc)] as a function of mWR

for mN = 585 GeV.
The green lines in the right panel correspond to the process W+

R l
−
R → W−R l

+
R for various ∆++

R
masses.

are relatively small. We have explicitly calculated the washout effect due to this process for
various values of mWR

and m∆++ . As shown in Figure 3 and also in Figure 2 (right panel),
this effect is negligible compared with the decay rate and other scattering rates when mWR

and
m∆++ are in the regime of interest.

In the strong washout regime, the flavored lepton asymmetry is approximately given
by [26, 21]

η∆L(z)lα '
3

2zKeff
l (z)

εlα
D̃α(z)

Dα(z) + Sα(z)
, (34)

where Keff
l is the effective washout parameter as defined in Eq. (32) and D̃/(D + S) is the

effective dilution factor. For the numerical fit given in Section 3, we obtain

η∆L
lα =

 5.16× 10−9 5.13× 10−9 1.32× 10−8

6.44× 10−11 4.89× 10−10 6.48× 10−10

0 0 0

 , (35)

and the total lepton asymmetry is found to be η∆L =
∑

lα η
∆L
lα = 2.47 × 10−8. This is well

consistent with the observed value of the baryon asymmetry η∆B =
(
6.105+0.086

−0.081

)
× 10−10 [27],

after taking into account the sphaleron conversion rate and the entropy dilution factors.

4.1. Lower bound of mWR

Here we present our procedure to derive a lower bound of mWR
which is compatible with

successful leptogenesis in a LRSM with all RH neutrinos being quasi-degenerate in mass. The
total lepton asymmetry is given by Eq. (34), which can be rewritten using Eq. (32) as

η∆L(z) =
3

4ζ(3)
z2K1(z)

∑
l,α

1

Wl(z)
εlα

D̃α(z)

Dα(z) + Sα(z)
. (36)

For the purpose of deriving a lower bound on mWR
, we assume that the dominant washout

effect comes from the WR-mediated scattering processes, i.e., Sα ≈
∑

k SRα = 3SRα where

SRα ≡ zγ̃SRkα /(n
γHN ). This follows from the fact that gauge interactions are flavor-blind, and

hence, γ̃SRkα has no dependence on lepton flavors. Similarly, when all the RH neutrino masses are
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quasi-degenerate, we can write SR ≡
∑

α SRα ≈ 3SRα. We also assume that D =
∑

αDα ≈ 3Dα

for simplicity. Note that SR is not summed over lepton flavors while D is. We further define εYlα
and BY

lα as the CP asymmetry and branching ratio, respectively, without the 3-body decay width
included in the denominator of Eqs. (24) and (33). For simplicity, we further assume that the
branching ratios of the decay process Nα → Llφ are the same for all the lepton flavors. With all
the above-mentioned reasonable assumptions, we can approximate the total lepton asymmetry
in Eq. (36) at the critical temperature as

|η∆L(zc)| ≈
3

4ζ(3)
z2
cK1(zc)

∑
l

1∑
α[BlαDα(zc) + SRα(zc)]

∣∣∣∣∣∑
α

εlα
D̃α(zc)

Dα(zc) + 3SRα(zc)

∣∣∣∣∣ (37)

≈ 9

4ζ(3)

z2
cK1(zc)

SR(zc)

rsr
2
d

(3 + rsrd)(3 + rs)
εYtot (38)

where the ratios rs ≡ D(zc)/SR(zc) and rd ≡ D̃(zc)/D(zc) parametrize the relative washout
strengths of the 2-body decay, WR-mediated decay and WR-mediated scattering processes. The
values of rs and rd depend on mN , mWR

, and the Yukawa coupling h. Assuming a specific
value of h and calculating the 2-body decay width simply as Γ(Nα → Llφ) = Γ(Nα → Lclφ

c) =
h2mN/16π, we can evaluate these parameters as functions of mN and mWR

.
Figure 4 shows the contour plots of |η∆L(zc)| = 2.47 × 10−8 for two different Yukawa

couplings h = 10−3.8 and h = 10−3.5. The red curves correspond to εYtot = 1 which is the
total CP asymmetry in the example fit given in Section 3. Any region outside the red curve is
incompatible with successful leptogenesis under the assumptions we introduced to obtain it, i.e.
mN1 ≈ mN2 ≈ mN3, BY

1α ≈ BY
2α ≈ BY

3α ≈ 1/3, εYtot = 1 for the two specific values of h. For
h = 10−3.8, we find that the lowest value of mWR

allowed for εYtot = 1 is 13 TeV at around mN =
580 TeV. Note that the example fit we have presented in the previous section has mWR

= 13.1
TeV, mN = 585 GeV, and the resummed Yukawa coulings of order around ∼ 10−3.8. Thus,
our example fit, shown as a green dot in Figure 4, is very close to the minimum value of mWR

obtained here in a simplified manner, which justifies the validity of this approach. In other words,
we have derived the lower bound in two different ways: (i) in Section 3 by carefully scanning the
parameter space in order to find an explicit fit with the lowest possible mWR

compatible with
leptogenesis, and (ii) using the approximate expression in Eq. (38). The remarkable agreement
between these two approaches shows that the simplified expression in Eq. (38) is very effective
in finding the region in parameter space compatible with leptogenesis and predicting the lower
bound of mWR

as well as the position in the parameter space where it exists. If we use the same
expression and take the maximal CP asymmetry allowed in principle, i.e. εYtot ≡

∑
l,α ε

Y
lα = 3,

then we obtain the blue curves Figure 4. With this maximal CP asymmetry, we have found that
the Yukawa coupling h = 10−3.5 gives the lower bound of mWR

= 9.9 TeV at mN = 630 GeV.
The Yukawa couplings cannot be increased arbitrarily without spoiling the lepton asymmetry,

since not only the source term due to the two-body decay of the RH neutrinos, but also the
washout effects due to inverse decay and ∆L = 2 scattering increase with the Yukawa couplings.
Similarly, for very small values of the Yukawa couplings, the branching fraction of the two-
body decay mode becomes comparable or smaller than the three-body decay mode due to WR

interactions, and therefore, the washout effect again increases. Thus, successful leptogenesis
works only in a range of the Yukawa coupling parameter space. This is shown in the three-
dimensional plot given in Figure 5, where we see that leptogenesis constraints in our model
require the Yukawa coupling to be 10−5.6 ≤ h ≤ 10−3.2 for mWR

≤ 30 TeV. The robustness of
the lower bound on mWR

obtained in Figure 4 can also be verified from Figure 5.
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(solid lines) with εYtot = 1 (red lines) and εYtot = 3 (blue lines). The green dot corresponds to the
example fit value presented in Section 3.

5. Summary
In this proceedings, we address two issues related to seesaw models for neutrino masses. The
first one deals with whether the TeV scale can be naturally in the TeV range without fine-tuning
of parameters. We present a natural TeV scale left-right model which achieves this goal and
therefore provides a counterexample to the common lore that either the seesaw scale must be
superheavy or the active-sterile neutrino mixing must be tiny in a UV-complete seesaw model.
The second issue addresses the important question: Whether in such low scale models, one can
have successful leptogenesis, and if so, what constraints are implied by this on the mass of the
RH gauge boson. In an explicit TeV-scale LR model, with an explicit fermion mass fit, we find
the lower bound to be 13.1 TeV and for generic models in this class of L-R seesaw with enhanced
neutrino Yukawa couplings compared to the canonical seesaw case and with maximal possible
CP asymmetry for each flavor, this bounds becomes 9.9 TeV.
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Figure 5: The allowed region of parameter space (shaded region) yielding successful leptogenesis
in our L-R seesaw model. The vertical gray surfaces show the bound on Yukawa couplings, while
the horizontal pink surface shows the lower bound on mWR

.

Appendix A. Collision Rates
The various collision rates for decay and scattering processes in Eqs. (27) and (28) are given
below:

γDlα = γNαLlφl + γNαlRqq̄′ , (A.1)

γ̃Dlα = γNαLlφl , (A.2)

γSLlα = γNαLlQuc + γNαu
c

LlQc
+ γNαQLlu

+ γNαLl
φ†Vµ

+ γ
NαVµ
Llφ

+ γNαφ
†

LlVµ
, (A.3)

γ̃SLlα =
ηNα
ηNeq

γNαLlQuc + γNαu
c

LlQc
+ γNαQLlu

+
ηNα
ηNeq

γNαLl
φ†Vµ

+ γ
NαVµ
Llφ

+ γNαφ
†

LlVµ
, (A.4)

γSRlα = γNαlRūRdR
+ γNαūR

lRd̄R
+ γNαdRlRuR

, (A.5)

γ̃SRlα =
ηNα
ηNeq

γNαlRūRdR
+ γNαūR

lRd̄R
+ γNαdRlRuR

, (A.6)

γ
(∆L=2)
lk = γ′Llφl

Lckφ
†
k

+ γLlLk
φ†l φ
†
k

, (A.7)

γ
(∆L=0)
lk = γ′LlφlLkφk

+ γ
Llφ
†
l

Lkφ
†
k

+ γ
LlL

c
k

φlφ
†
k

. (A.8)

The scattering terms involving two heavy neutrinos in the initial state, e.g. induced by a
t-channel WR or eR, and by an s-channel ZR, are not included here since their rates are
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doubly Boltzmann-suppressed and numerically much smaller than the scattering rates given
above [20, 29]. The decay rates are explicitly given by

γNαLlφ =
m3
Nα

π2z
K1(z)

[
Γ(Nα → Llφ) + Γ(Nα → Lclφ

†)
]
, (A.9)

γNαlRqq̄′ =
m3
Nα

π2z
K1(z)

[
Γ(Nα → lRqRq̄

′
R) + Γ(Nα → l̄Rq̄Rq

′
R)
]
. (A.10)

The various collision terms for the 2↔ 2 scattering processes XY ↔ AB are defined as

γXYAB =
m4
N1

64π4z

∫ ∞
xthr

dx
√
xK1(z

√
x)σ̂XYAB (x), (A.11)

where x = s/m2
N1

with the kinematic threshold value xthr = max[(mX+mY )2, (mA+mB)2]/m2
N1

,

and σ̂XYAB (x) are the relevant reduced cross sections, whose explicit expressions can be found
in [21]. The reduced cross section of the additional process W−R l

+
R → W+

R l
−
R mediated by ∆++

R
is given by

σ̂WRlR
WRlR

(s) =
g4
Rm

2
N1

8πs

log

(s−m2
WR

)2 +m2
∆++
R

s

m2
∆++
R

s

+
m2

∆++
R

s

(s−m2
WR

)2 +m2
∆++
R

s
− 1

 . (A.12)
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