
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Characterising the effect of global and local
geometric imperfections on the numerical
performance of a brace member
To cite this article: M S Hassan et al 2015 J. Phys.: Conf. Ser. 628 012063

 

View the article online for updates and enhancements.

You may also like
Cyclic behavior of superelastic SMA cable
and its application in an innovative self-
centering BRB
Yifei Shi, Hui Qian, Liping Kang et al.

-

Evaluating the ductility characteristics of
self-centering buckling-restrained shape
memory alloy braces
Hamdy Abou-Elfath

-

A piezoelectric brace for passive
suppression of structural vibration and
energy harvesting
Chuang-Sheng Walter Yang, Yong-An Lai
and Jin-Yeon Kim

-

This content was downloaded from IP address 18.223.119.17 on 07/05/2024 at 17:30

https://doi.org/10.1088/1742-6596/628/1/012063
https://iopscience.iop.org/article/10.1088/1361-665X/ac1907
https://iopscience.iop.org/article/10.1088/1361-665X/ac1907
https://iopscience.iop.org/article/10.1088/1361-665X/ac1907
https://iopscience.iop.org/article/10.1088/1361-665X/aa6abc
https://iopscience.iop.org/article/10.1088/1361-665X/aa6abc
https://iopscience.iop.org/article/10.1088/1361-665X/aa6abc
https://iopscience.iop.org/article/10.1088/1361-665X/aa6e98
https://iopscience.iop.org/article/10.1088/1361-665X/aa6e98
https://iopscience.iop.org/article/10.1088/1361-665X/aa6e98
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsushM4pXvQIP03CBC6eodFLshgF6EzdXTj9y4UgSNqKX1JJt5PckKL0IrcXoD1ZENAkqwnFpxmwZJL8OdxvzeSKbHYmnGpcVYUpL50xDUBtJHhG_qNjJ6xbZIv1c0YnBKtkUXY9Q67urLTuDkW59KV2OtPDwbZz5w2-Q5iGhLRsx4kYaEyVnEwo5O3mHJeX7DguPDJxgOU0mI6ZA-F74TnjtuValCUazZSs2WyzmG9qIHnIMYaz-52GkqMTSIctQ2CeTkee4MNVUy19h7oClankjSIU6lJgn39OcI_ggOZlWZpjvepBJ6cVoV-7gWJFr-fJTGro4Ll6wag-gHc6P0-M_0Zmjg&sig=Cg0ArKJSzAvXdoORjyoX&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Characterising the effect of global and local geometric 
imperfections on the numerical performance of a brace 
member  

M S Hassan1, J Goggins1 and S Salawdeh2 

1College of Engineering & Informatics, National University of Ireland, Galway, 
Ireland 
2Department of Civil Engineering, An-Najah National University, Nablus, Palestine 
 
Email: m.hassan3@nuigalway.ie 

Abstract. A numerical imperfection study is carried out on a hot rolled tubular brace member 
under displacement controlled amplitudes. An appropriate range of global and local 
imperfections is used in the finite element analyses to evaluate the initial-post buckling 
compressive strength, lateral storey drift, energy dissipation and mid-length lateral deformation 
of the brace member. The purpose of this study is to assess the impact of the geometrical 
imperfection on the numerical performance, and to determine an amplitude range that can be 
used unequivocally for numerical modelling of brace members. It is shown that the amplitude of 
global imperfections has an effect on the initial response, whereas the amplitude of local 
imperfections has influence on the resistance capacity of the brace member at higher ductility 
level. Based on the results, a refined range of amplitude of global and local imperfections is 
proposed. This range is found to have a good agreement with design standards. In addition, an 
already established equation to find lateral deformation is compared to results from the analyses 
and found that the equation with some modification can be used accurately in design. In this 
paper, a modification factor is proposed in the equation to find the lateral deformation to account 
for the imperfection amplitude in the numerical analyses of brace members.  

1. Introduction 
The current knowledge on both the distribution and magnitude of cross-sectional and member 
imperfection is significantly insufficient for replication of physical configuration into a numerical 
prototype. Also, the guidelines in the design standards and in the product certificates only cover a 
conservative range of the upper limit for amplitudes of imperfection to be used in the analysis. One of 
the reasons of such physical absence is the complexity of the imperfection associated with the rolling 
and fabrication process which have excluded their definite characterisation [1]. Consequently, numerical 
techniques have adopted a variety of forms and amplitudes to account for imperfections. However, those 
forms are entirely based either on numerical studies or on the mathematical formulation rather than 
physical tests. An alternative solution to the problem is the probabilistic treatment of imperfection 
proposed by Schafer and Pekoz�  [2].  

In advanced modelling of braces, such as physical theory based models, geometrical imperfections 
categorised longitudinally into two or more elements to form half-sine wave along the member length. 
Such models were developed by Salawdeh and Goggins [3] and Uriz et al [4]. However, imperfection 
in a similar manner cannot be modelled in the finite element (FE), as they do not represent an explicit 
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approach to model imperfection. In such models, the behaviour of imperfection is characterised by very 
small spaced Eigenvectors representing the deformed values of the buckling mode. Alternatively, these 
deformations could be applied to the nodes directly into the desired form of imperfection to the model. 
A model of this latter type was developed by Nip et al [5]. 

Thus, this paper attempts to highlight the way different imperfection types and their interaction affect 
the compressive response of the hollow member by means of finite element analyses. This is carried out 
to find a suitable range of amplitudes to be used for the forthcoming research.  This study is part of a 
larger research project concentrating on the inelastic behaviour of the tubular bracing members in 
concentrically braced frames by Broderick et al. [6]. The FE analyses are carried out on a series of 
geometrical imperfections incorporated in an axially compressed brace member. These imperfections 
are categorised into (i) global imperfection consisting of half-sine wave and named as Method 1, (ii) 
equivalent lateral load-global imperfection as Method 2, and (iii) local imperfection as Method 3.  

2. Finite element modelling of SHS brace member 
A commercial finite element package ABAQUS [7] is used to construct the model of a brace member 
subjected to a displacement controlled axial loading. The displacement amplitudes are implemented into 
a nonlinear static solver that accounts for large geometrical nonlinearity during the analysis based on 
the Newton-Raphson technique. The symmetry of the cross section has been considered herein, such 
that only half of the section was modelled. 

2.1 Brace properties 
The studied brace member is a 40x40x3-1250 mm SHS formed from hot rolled carbon steel of grade 
S355 J2H, which is classified as Class 1 according to the slenderness criteria set by EC3 Part 1-1 [8]. 
The normalised global slenderness, 	λ� is 0.6, which is defined by EC3 Part 1-1 [8] as 	λ	� = �f	A/N
�, 
where f	 is the yield strength, A is the gross cross sectional area, and N
� is the elastic critical buckling 
load. This value is less than the upper limit on the global slenderness λ� specified in EC8 [9] of 2.0 for 
bracing member in the concentrically braced frames. The monotonic tensile mechanical properties of 
the material are given in Table 1. 

2.2 Element and mesh size   
The 4 nodes doubly curve shell element with reduced integration, designated S4R, is used to mesh the 
model. This element deforms explicitly in shear and provides less computational cost compared to the 
other quadratic and cubic elements. In addition, this element has been used in previous similar studies 
for modelling of tubular members [5, 10]. 

Nip et al [5] carried out a detailed mesh study prior to simulation, and found that a variation of strain 
output in the highly localised strain region was small beyond a mesh size of 32 elements per face. In 
addition, this size of element possesses an aspect ratio close to unity. Thus, it was found suitable to be 
used at the mid-length and ends of the models, where the local buckling was likely to occur. The extend 
of the refined mesh at the regions of the local buckling was set to 1.5 times the larger dimension of the 
cross section. In other regions, coarser mesh was used to reduce computational cost.  

2.3 Boundary conditions  
The boundary conditions are applied to both ends of the brace, such that they are restrained in all 
directions (six degree of freedom at each node) except the loaded end. In addition, restraint in the y-
direction was imposed along the length of the member due to the symmetry of the cross-section as shown 
in Figure 1. 
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Table 1. Monotonic tensile engineering material properties [5]. 

Model 
Young’s Modulus, E 

(N/mm2) 
Yield Strength, f	 

(N/mm2) 
Ultimate tensile strength, f� 

(N/mm2) 
40x40x3-CS-HR 219610 478 555 

 
 

 

 

 

 

 

 

 

 

Figure 1. Symmetry condition and end restraints of the brace model 
 

2.4 Geometrical imperfection 
A detailed literature review was carried out on the types and amplitudes of imperfection that have been 
used previously for the prediction of load-displacement behaviour of brace members. For global 
imperfection, two approaches are widely used in numerical models, (i) a half-sine wave profile is used 
to derive the initial geometric shape of the brace to capture its out-of-straightness (henceforth, known 
as Method 1) (see, for example, [3,4,11-13]) and (ii)  the application of an equivalent notional lateral 
load normal to the plane of the buckling at the mid length of the un-deformed member (henceforth, 
known as Method 2) (see, for example, [5]). In the first approach, the nodal coordinates of the brace 
represent the unloaded imperfect brace member, using a half sine wave imperfection over its length 
(Figure 2a). However, in the latter approach, the nodal point loads at the mid-length as shown in Figure 
2b, represents an initial imperfection in the brace member.  

Long, thin plate buckles locally into half sine waves under uniform axial compression, therefore, it 
was assumed appropriate to model the brace with local imperfection by using a sine function, which is 
given as: 

ω� ∙ 	sin ��∙�� 	�		                                                                     (1) 

 
Where, ω� represents the amplitudes of local imperfection, x’s are the nodal coordinates of the models 
and L is the overall length of the brace model. The equated imperfections are incorporated into the 
numerical model by defining the nodal coordinates into their imperfect configuration, which results in 
a ‘flowing fish’ pattern of imperfections over the brace length as in the Figure 2c. 

In order to characterise the varying effect of global imperfections across a range of amplitudes, a 
suitable range of global amplitudes, ω1, from L/100 to L/2000 for initial mid-length out-of-straightness 
was selected. This range represents a broad scale of amplitudes compared to the tolerance limit of L/500 
prescribed in the European (EN 10210-2 2006) [14], North American (ASTM A501 2005) [15] and 
Australian (AS 1163 1991) [16] standards for hot-rolled sections. Furthermore, the wall thickness, t, 
tolerance in those standards for hot rolled section is given as ±10% of the section thickness. Thus, a 
range of t/5 to t/200 was chosen for local amplitudes, ω2, to account local imperfection in brace models. 

3. Discussion of results 

3.1 Initial and post buckling compressive strength 
The initial buckling loads (Fcr) correspond to the types of imperfections with varying amplitudes are 
presented in Table 2. These values are normalised to the un-factored design strengths calculated 
according with EC3 [8] using buckling curve a and AISC [17] design standards. The results are tabulated 

∆y = θx = θy = 0 (symmetry) 

∆x =0 

∆y = 0 

∆z = loaded 
θx = θy = θz = 0 
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in the order of decreasing geometrical imperfection. Similar arrangements are used in the figures 
throughout this study. 

  
Figure 2. Brace model derived using three methods: (a) Half sinusoidal profile used to derive the 
initial geometric shape (Method 1), (b) Concentrated nodal point load at mid-length corresponding 
to the equivalent lateral load imperfection (Method 2), (c) Initial sinusoidal local imperfection profile 
(flowing fish pattern imperfection) (Method 3). 

When the initial global out-of-straightness of the brace member has a magnitude ω1 ≤ L/500, the 
initial buckling loads obtained from the FE models that employ Method 1 to capture initial global 
imperfections is between 2 and 8% higher than estimates from EC3 [8] and 5-11% higher than 
predictions from AISC [17]. On the other hand, the estimates from the codes overestimated the initial 
buckling capacity of between 5 and 15% for models where higher imperfection is used. As expected, 
the buckling capacity of the member reduces with increase in initial out-of-straightness. From Table 2, 
it is evident that lower initial buckling capacities are obtained for a given amplitude of the initial out-
of-straightness when the imperfections are applied using a notional lateral load at mid-length (i.e. 
Method 2), rather than creating a geometric model of the unloaded member incorporating its out-of-
straightness (i.e. Method 1). 

The initial buckling capacity of the braces obtained using Method 2 is affected by both the residual 
stresses and deformed geometry induced by the equivalent lateral load, whereas no residual stresses are 
present in Method 1. Consequently, the local deformation induced by the equivalent lateral load applied 
locally to the brace surface at mid-length has a magnificent effect on overall brace buckling capacity, 
especially, when ω1 ≥	L/250. Based on the FE results, the tolerance of L/500 specified by international 
standards for the initial out-of-straightness seems appropriate when considering the initial buckling 
capacity of brace members. However, engineers should be aware of the impact that various methods of 
applying global imperfection have on the buckling capacity of the brace. In reality, the real physical 
behaviour of brace lies between Method 1 and Method 2.  

In figures 3 and 4, the buckling resistance (Fcr) normalised by the yield strength of the section (FyA) 
is plotted against normalised axial displacement (δc) to yield displacement (δy). This facilitates the direct 
comparison of the response at buckling strength during the entire loading history. Models with initial 
lower out-of straightness shows a clear interaction of global-local effect by a bell-shaped transition curve 
in the post-buckling range, which indicates that the local buckling was initiated at higher strain rates. 
However, such transition effect is suppressed in braces where higher imperfection is present. This is due 
to the inelastic strain being concentrated over a large critical region, that affect the strain rate in the 
critical region of the models with higher amplitudes of imperfection. This was proven by monitoring the 
strain rate at locally buckled region around the mid-length of the brace models. 

 
 

(a) (b) 
(c) 
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Table 2. Comparison of the initial buckling load for braces subject to axial compression loading and 
with various amplitudes of out-of-straightness, ω1. 

Methods of  applying global imperfection 

Amplitude 
ω1

* 

Initial 
imperfection 

(mm) 

Method-1  Method-2 

Fcr Fcr / FEC3-a*
 Fcr / FAISC  Fcr Fcr / FEC3-a* Fcr / FAISC 

L/100  12.5 160 0.85 0.87  68 0.36 0.37 

L/175 7.14 172 0.91 0.94  121 0.64 0.66 

L/250 5 180 0.95 0.98  160 0.84 0.87 

L/500 2.5 193 1.02 1.05  170 0.90 0.92 

L/1000 1.2 200 1.05 1.09  184 0.97 1.00 

L/1500 0.833 203 1.07 1.11  186 0.98 1.01 

L/2000 0.625 204 1.08 1.11  194 1.02 1.06 
a* represents buckling curve a of EC3 used for calculation of buckling strength 
ω1

* imperfection assumed at the mid-length from the face of an equivalent perfect straight member 

Upon local buckling, the local post-buckling capacities of the models with method-1 reduce further 
regardless of the influence of global amplitudes of imperfection. However, a fluctuation is observed in 
results of models with method-2, due to the same reason outline in this section previously. 

From the above observation, we can say that the predicted response corresponding to the lower 
amplitudes of imperfection, i.e. when ω1 ≤ L/500, represents the true buckling behaviour of brace under 
axial compression loading that meet the limits specified by international standards for initial out-of-
straightness.  

The initial elastic compressive strength, Fe, obtained from the local analyses of the models consisting 
of sinusoidal wave imperfection is presented in Table 3. The elastic response of the imperfect models 
under axial compression is similar to that for a member under tensile loading and is independent of the 
influence of initial local imperfection. In those locally imperfect models, local buckling occurs after the 
yield strength is exceeded.  

 
Figure 3. Normalised Fcr-δc curves of FE Models with half-sine wave imperfection (Method 1) with drift 
capacity. 
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Figure 4. Normalised Fcr-δc curves of FE Models with sinusoidal wave imperfection (Method 2) with drift 
capacity. 

 
In figure 5, at ductility level µ ≥	3 the compressive resistance of the brace models with local 

imperfection ω2 ≤ t/100 is increased relative to a perfectly straight member. However, at the same 
ductility level the compressive strength of the models is reduced when ω2 ≥ t/50. It may be due to the 
difference of the numbers of local buckling occurred in the critical regions in the models when, t/5 >
	ω2 ≥ t/50 (i.e. simultaneous five local buckling) and ω2 ≤ t/100 (seven local buckling occurs) 
respectively. In general, we can say that amplitudes of initial local imperfection has negligible effect on 
elastic response, Fe, but significant effect on the resistance capacity at higher ductility level. 

3.2 Energy dissipation capacity 
The area under the force-displacement curves represent the energy dissipation capacity of the brace 
members and are presented in tables 4 and 5. These values are calculated at a ductility level of 4 and 10, 
and indicated as Wµ=4 and Wµ=10. The obtained values are normalised with the elastic strain energy of 
the member, which is a function of the cross sectional area and yield strength. 

When the dissipated energy corresponding to the braces with higher amplitude of imperfection (i.e. 
ω=L/100) are compared with those having lower amplitude of imperfection (i.e. ω=L/2000), an average 
of 35% less energy is dissipated by the braces with a higher amplitude of imperfection at two ductility 
levels, i.e. at µ= 4 and µ=10, when modelled using Method 1. At the same ductility levels and with same 
amplitudes of imperfection, the brace modelled using method-2 (i.e. with an equivalent lateral load 
imperfection), dissipated 90% lesser energy when it contained a high level of imperfection in 
comparison with the model having lower amplitude of imperfection. The reasons for such a markedly 
varying dissipated capacity of the models in two methods are the same outlined in the previous section. 
It should be noted that despite two different imperfection methods, almost same dissipated energy 
capacity is achieved when lower amplitude of imperfections are employed in the models (Table 4).   

The models with higher amplitudes of local imperfection, i.e. ω≥	t/50, show on average 15% 
reduction in energy dissipation capacity relative to a model with no imperfection at a higher ductility 
level, i.e. µ=10.  However, at the same ductility, an increase of 12% in energy dissipation capacity is 
observed in models where lower amplitudes of imperfection were used. At lower ductility level, µ=4, 
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the variation in energy dissipation capacity is minimal due to the difference in the numbers of 
occurrences of local buckling in the models, as discussed earlier.  

3.3 Lateral deformation 
The results of the FE models in relation to the out-of-plane deformation are plotted against axial 
displacement in Figure 6. The values are normalised with the brace length, L and yield displacement, δy 
in order to facilitate the comparison between the lateral deformation and the axial shortening. The figure 
shows curves that lateral deformations of braces with larger amplitudes of global imperfection 
commences during the elastic loading. However, for braces with smaller amplitudes (i.e. ω1	≤	L/1000), 
such excessive deformation was initiated upon the onset of the global buckling. This response agrees 
with the response of the brace member concluded by Tremblay [18].  

The curves are compared to the predictive equations proposed by Tremblay [18] and given in Eqs 
(2) and (3) for higher and lower ductility levels.  These equations are a function of the applied axial 
displacement, δc, cross sectional depth, h, and brace length, L, having a coefficient at the front that 
depend on the support conditions. 

 
Figure 5. Normalised load-axial displacement response of models incorporated with sinusoidal local 
imperfection (Method 3). 

 
Table 3. Summary of the numerical results for local analyses of braces with local imperfections over 

length as sinusoidal waves (flowing fish pattern imperfection). 
Amplitude  

ω2
*  

 Initial imperfection 
(mm) 

 Fe  
(KN) Fe/FEC3-a Fe/FAISC 

t/5  0.6  192 1.01 1.05 

t/10  0.3  203 1.07 1.11 

t/15  0.2  205 1.08 1.12 

t/25  0.12  205 1.08 1.12 

t/50  0.06  205 1.08 1.12 

t/100  0.03  206 1.09 1.13 

t/150  0.02  206 1.09 1.13 

t/200  0.015  206 1.09 1.13 

No imperfection  0  204 1.08 1.12 
                ω2

* imperfection assumed from the face of an equivalent perfect straight member   

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10

F
 /

 F
y

A
g

N
or

m
al

is
ed

 r
ea

ct
io

n 
fo

rc
e

δc / δy

Normalised axial shortening

t/5 t/10
t/15 t/25
t/50 t/100
t/150 t/200
Yield Load Fy=212 KN Ultimate load Fu=250 KN
No imperfection

Ultimate Load Fu = 250 KN

Yield Load 
Fy = 212 KN

11th International Conference on Damage Assessment of Structures (DAMAS 2015) IOP Publishing
Journal of Physics: Conference Series 628 (2015) 012063 doi:10.1088/1742-6596/628/1/012063

7



Table 4. Summary of the dissipation capacity of the brace models with global imperfection. 
Amplitude Method-1  Method-2 

ω1 Wµ=4 Wµ=10   Wµ=4 Wµ=10 
L/100 3.3 6.6  0.5 0.8 
L/175 3.7 7.7  1.8 3.1 
L/250 4.2 8.0  2.6 4.6 
L/500 4.6 9.0  3.9 6.8 
L/1000 5.1 9.4  4.6 8.3 
L/1500 5.3 10.0  4.7 8.8 
L/2000 5.5 10.1  5.0 9.0 

 
Table 5. Summary of the dissipation capacity of the brace models with local imperfection.  

Amplitude Method-3 
ω2 Wµ=4 Wµ=10 
t/5 5.8 N/A 
t/10 6.5 15.1 
t/15 6.5 15.6 
t/25 6.5 16.4 
t/50 6.8 17.0 

No imperfection 7.3 19.3 
t/100 7.4 21.4 
t/150 7.4 21.5 
t/200 7.4 21.6 

 
Three different responses of the lateral deformation can be observed. Firstly, the curves running close 
to the higher predictive equation are those with a larger global imperfection corresponding to Method 
2. Secondly, the curves running furthest away from the same equation. Thirdly, the curves running 
between the boundaries of the two predictive equations, and are similar to each other in shape.  
 

∆	= 0.7 ∙ �δ
 ∙ *L − 2h.	           For higher ductility level        (2) 
 

                                                   ∆	= 0.16 ∙ �δ
 ∙ L	                   For lower ductility level        (3) 

The predictive equation for higher ductility level tends to give conservative results. The same 
conclusion was reported by Nip et al. [5]. This can be expected because it accounts for the lateral 
deformation of buckled slender braces in the post buckling region, which show larger lateral 
deformations at larger axial displacements compared to less slender braces. 

Based on the FE results and the predictive equation, a dimension-less factor is introduced to the 
equation proposed by Tremblay [18]. This factor consists of a Γ factor that depends on the adjacent ratio 
of the imperfection amplitude, ω1, and the brace length, L. The imperfection amplitudes ω1 can take 
global amplitudes, ω1, up to a maximum and minimum of L/5 to L/2000 respectively. 

 

∆	= Γ	 ∙ 	12� 	 ∙ 0.7�δ
 ∙ *L − 2h.                                                 (4)                                                                                                                          
 

The values for Γ can be obtained using Equation (5). This equation is derived from a curve fitting 
analysis, with a correlation coefficient (R2) = 1. The ratio of imperfection amplitude, ω1, and the brace 
length, L, has been replaced with variable α for equation convenience, such that: 

 

  Γ =	 3.4567.89                                                                           (5)                                              
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Figure 6. Normalised lateral deformation at mid-length corresponds to (a) half-sine wave imperfection 
 and (b) equivalent load imperfection. 
 

The proposed factor significantly accounts the variation of the lateral deformation across the 
imperfection amplitudes for short brace member. At higher amplitudes it will produce the magnitude 
close to the unity and the equated results will be approximately in line with the results of the Tremblay 
Equation (2). However, the factor will reduce the magnitude of the lateral deformation when lower 
imperfection amplitudes are used in the equation. 

4. Recommendation for geometrical imperfection for less-slender hot rolled sections 
The summary of the imperfection study with the view of finding a suitable range of imperfection 
amplitudes for the numerical modelling of hot-rolled tubular brace member is: 

o When using global half sine wave imperfection, a minimum amplitude of L/2000 is used but 
not greater than L/500, which is the maximum tolerance specified by the international standards. 

o For notional lateral load imperfection, amplitudes L/1000 to L/2000 are recommended to be 
used at the mid length of the critical region, provided that the computational cost is of 
significance interest. 

o An amplitude range of t/10 to t/50 is recommended for local imperfection in order to avoid the 
enhancement of the forcible resistance at higher ductility levels. 

o If physically measured imperfection is available these should be utilised in the numerical model 
to more accurately capture the actual performance of brace member. 
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