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Abstract. Due to the random nature of the road excitation and the inherent uncertainties in 

bridge-vehicle system, damage identification of bridge structure through continuous 

monitoring under operating situation become a challenge problem. Methods for system 

identification and damage detection of a continuous two-span concrete bridge structure in time 

domain is presented using interaction forces from random moving vehicles as excitation. The 

signals recorded in different locations of the instrumented bridge are mixed with signals from 

different internal and external (road roughness) vibration sources. The damage structure is also 

modelled as the stiffness reduction in one of the beam element. For the purpose of system 

identification and damage detection three different output-only modal analysis techniques are 

proposed: The covariance-driven stochastic subspace identification (SSI-COV), the blind 

source separation algorithms (called Second Order Blind Identification) and the multivariate 

AR model. The advantages and disadvantages of the three algorithms are discussed. Finally, 

the null-space damage index, subspace damage indices and mode shape slope change are used 

to detect and locate the damage. The proposed approaches has been tested in simulation and 

proved to be effective for structural health monitoring.     

1. Introduction 
One of questions in research attention is the use of structural response from operational dynamic loads 

in the damage detection procedures. In the long service life and continuous operation process, bridge 

may suffer resistance and damage accumulation under the comprehensive effect of random vehicle 

loads and environmental effects such as wind load and rain load. By placing sensors on bridges, the 

bridge health status can be monitored online through health monitoring system in order to determine 

the degree of damage.  For bridge monitoring the vehicle-bridge structure interaction effect needs to 

be considered in the modal parameter identification. Generally, the modal parameters of the vehicle- 

bridge system are changing when the random vehicles are moving on top of the bridge (include the 

road roughness). For such a system, system identification tools must be developed and tested using 

numerically generated time histories so as to verify the methodologies. For identification, using time-

frequency tools, which are non-parametric methods for processing responses of non-linear or non-

stationary system, had been studied [1, 2]. A linear approach derived from the stochastic subspace 

identification (SSI) method, together with the moving window SSI to examine the time-varying 

system, has also been adopted for vibration-based system identification [3].       
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In this study, comparison of three different time-domain identification and damage detection methods 

are proposed to identify the bridge model properties by using the simulation data of a vehicle-bridge 

structural interaction under random travelling loads and with consideration of surface roughness. First, 

the automatic covariance-drive stochastic subspace identification (SSI-COV) is proposed to extract the 

system poles through stability diagram. In cooperated with the wavelet packet transform (WTP) sifting 

process for modal phase consistency, spurious modes can be removed from using SSI. For well-

separated modes, the blind source separation (called Second-order Blind Identification, SOBI) 

algorithm can also be used for identification and damage detection. Advantages and disadvantages of 

the two methods are discussed. Finally, a parametric identification method, using multivariate AR-

model, is adopted to enhance the damage detection and compare the result with other methods. 

 

2. Simulation of bridge-vehicle interaction system 

A two span bridge model is proposed in this study, as shown in Fig.1. It shows a bridge carrying a 

series of random moving vehicles which are modelled as a sprung-mass system. The bridge is 

modelled as a Bernoulli-Euler beam by finite element method. The information for the bridge and 

vehicles are provided in Table 1. The traffic loads are assumed as random and to be moving as a group 

from both sides (two ways) of the bridge with random velocity. The prescribed velocity of each car is 

random generated and shown in the travel time across the bridge with span length of total 200 m, as 

shown in Fig.2. A total of 16 cars are on the bridge during the measurement. From Fig.2 one can see 

that during the recorded time window (i.e. 30. sec) some cars are still on the bridge and some cars may 

just enter/leave the bridge. In this paper, the simulation of road roughness in vehicle–bridge interaction 

is also considered [4, 5]. The random road surface roughness of the bridge can be described by a kind 

of zero-mean, real-valued, stationary Gaussian process defined by ISO 8608 [6].  The moving vehicle 

is also modelled as a moving mass with spring-mass system. Based on the finite element method a 

total of 10 beam elements (Bernoulli-Euler beam) are used and the nodal points are considered as 

measurements. First, the system equation of motion is formed, then the equations of motion of the 

bridge-vehicle interaction system can be solved by Newmark-βmethod. Acceleration responses from 

each nodal point (similar to measurement point) are collected with duration of 30. sec. Both intact and 

damaged situation of the bridge structure are simulated. For damaged case a 50% of stiffness reduction 

at element 7 (between measurement point 5 and 6) is assumed.  

  

Figure 1. Bridge model with two-way travelling vehicles and the location of measurement points.  

Table 1. Natural frequencies of bridge model and vehicle information. 

Bridge 

Data 

Bridge 

Freq. (Hz) 

1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 7th mode  8th mode 

2.12 5.29 8.37 16.42 20.50 30.31 41.55 48.65 

Vehicle 

Data 

Vehicle system natural frequency: 1.96 Hz ~ 6.5 Hz 

Vehicle Weight (ton) : 1.5 ~ 9.0 

 

3. Identification of bridge-vehicle interaction system 

To identify the dynamic characteristics of the bridge directly from the vibration measurement during 

random travelling vehicles, two different approaches are employed: the covariance-drive stochastic 

subspace identification (SSI-COV) and the second-order blind identification (SOBI). Damage 

detection will also be studied from the extracted vibration features and system modal properties.  

1 2 3 4 5 6 7 8 9 10 
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Discussion on the identification of damage location using parametric Multivariate-AR model is also 

presented for comparison.  

 

Figure 2. Plot the relationship between the recorded time window (30. sec) and the location of vehicles 

(8 cars from right and another 8 cars from left) travelling with different speed. 

 

3.1. Automatic covariance-drive stochastic subspace identification (SSI-COV)  

A fully automatic identification scheme of reference-base SSI-COV algorithm is developed to extract 

the dynamic characteristics of the monitoring structure. Technique to remove the spurious modes is 

included in the automatic identification scheme and the calculation of uncertainty on the identified 

modal parameters is to confirm the accuracy of the identified modes. The following 4 stages are 

developed to provide a good quality of the stability diagram from using SSI-COV [13]: 

a. Conduct down-sampling on the recorded data (from 200. Hz to 50 Hz), and then adopt singular 

spectrum analysis (SSA) on the data Toeplitz matrix so as to construct the stability diagram (fix 

number of rows in data Hankel matrix and change number of order in Singular Value 

Decomposition). 

b. Select output modal amplitude criteria (OMAC) and mode phase co-linearity (MPC) to remove the 

spurious modes from stability diagram. The hard criteria, such as threshold values on mode 

assurance criteria, system natural frequency and damping ratio are also employed. 

c. Use the 4-means clustering algorithm to minimize the sum of the squared Euclidean distance 

between the extracted poles, and determine the suitable poles satisfy the criteria. 

d. Grouping of poles with each individual mode and identify the physical modal parameters of each 

mode by using uncertainty bounds of modal frequency and damping ratio as weighting factor for 

each pole in each specific group of poles.   

Through the proposed 4 stages in SSI-COV analysis, one can significantly increase the autonomous 

ability to remove the spurious modes and create a clear and identifiable stability diagram. The system 

dynamic characteristics can also be identified.  

 

3.2. Second-order blind identification (SOBI) 

In applying SSI-COV some parameters need to be determined, such as the number of row in data 

Hankel matrix and the number of order, which depends on the dynamic characteristics of the system. 

Different from the SSI-COV algorithm, blind source separation (BSS) is also a signal processing 

technique, which attempts to recover individual unknown but statistically independent components 

with only knowledge of measurements [7]. There is no need to provide parameters in using BSS 

algorithm. The simple model for BSS assumes the existence of n independent signals 

(t)]s,(t),[s n1 TS  and m measurements (t)]x,(t),[x m1 TX . This is completely represented by 

the mixing equation 

                                                                      (t)(t) ASX                                                                    (1) 
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where 
mxnRA . If the number of measurements and the excitation sources are remain the same, 

then the source vector S can be obtained once the mixing matrix A is estimated. But the physical 

meaning of the mixing equation needs to be established. Now consider a linear time-invariant system 

with n degree-of-freedom (DOF). The system response can be formulated as the product of mode 

shapes ][][ 21 n,,,  Φ  and modal coordinates U(t):  

   (t)][(t) UΦX                                                                               (2) 

Compare Eqs.(1) and (2), under the conditions where the modal coordinates are mutually uncorrelated 

with non-similar spectra for dynamic system which is similar to the assumption of BSS that provided a 

one-to-one mapping between the mixing matrices (sources) and the vibration modes (modal responses) 

of the system, therefore, the BSS can be interpreted as the modal expansion. 

Since most BSS techniques are based on a model in which the sources are mutually independent, 

however, the second order blind identification (SOBI) belongs to a BSS technique that makes use of 

the temporal structure. It means that the sources have different autocorrelation function (or power 

spectra) and are mutually uncorrelated [8, 9]. To perform SOBI two computation steps are required: 

whiting process and determining the matrix U that approximately diagonal the whitened covariance 

matrix. For whiting process, first, conduct the eigenvalue decomposition of the signal covariance 

matrix: 
T

X EDER (0)][                                                             (3) 

From which the weighting matrix is defined: 

T
EDW 2

1
                                                                            (4) 

Additionally, the whitening observed data Z can be expressed as: 

XWZ                                                                       (5) 

The covariance matrix of the whitening data becomes: 

                                           IUUWWAAWASSWAZZ  TTTTTTT ][][ EE                                  (6) 

where IE ][ T
SS  and WAU  . Because sources are stationary and uncorrelated, therefore, the time-

delayed covariance matrix of sources is diagonal. From this one can easily determine the U matrix 

through an eigenvalue decomposition of the time-delayed covariance matrix of whitened data. For 

different time-delayed , the whitened covariance matrix is also different. SOBI algorithm employs 

the joint approximation diagonalization (JAD) technique to determine the matrix U that approximately 

diagonalized the whitened covariance matrix with different time-delayed value  [10]. Procedures of 

using SOBI for modal identification are listed as follows: 

1. Pre-Processing： Zero-mean can remove the offset and slope of the measured signals. Whitening 

makes the measured signals uncorrelated and have unit variance. 

2. JAD Analysis：  After applying joint approximation diagonalization, the U matrix which 

diagonalized the whitened covariance matrices with different time-delayed value can be obtained.  

3. Modal Analysis： When mixing matrix A is obtained; the source vector S can be determined and 

apply Fourier transform to the source vector to determine the system natural frequencies. 

 

4. Vibration-based system identification of bridge under travelling vehicle loads 

Acceleration response data (vertical vibration) of the vehicle-bridge structure interaction through 

numerical simulation was used for analysis.  The original sampling rate was 500 Hz. Before adopting 

the SSI-COV algorithm to extract the system dynamic characteristics, the data was down-sampled to 

125 Hz for the analysis (through Butterworth low-pass filter). In this simulation a total of 16 cars (both 

ways) travelled on the bridge with different speed simultaneously. Figs. 3a and 3b shows the stability 

diagram developed from SSI-COV. The size of the data Hankel matrix is (500x500). Fig. 3a used the 

OMAC criteria of 99.99% to remove the spurious mode while Fig. 3b used both OMAC (99.99%)  and 

MPC (99.9%) criteria. It is clear that with adding extra MPC criteria some spurious modes near 
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frequency 4.5 Hz and 6.4 Hz can be removed from the stability diagram, but still has some poles 

which still stay in the stability diagram. This is the phenomenon of complex modes (the effect of 

travelling waves). To check poles under such ambiguity, wavelet packet transform (WPT) is applied to 

extract signal near the frequency where ambiguity poles are located. As shown in Fig. 4, the response 

(from WPT) from each measurement is plotted at frequency of 4.28 Hz and 5.26 Hz (from the location 

of ambiguity poles) [14]. It is observed that the phase difference among the measurement at frequency 

of 4.28 is not consistent even though the identified poles are satisfy both the OMAC and MPC criteria. 

Through such an observation these ambiguity poles can be also be removed from the stability diagram. 

 .                 b    

Figure 3a. Stability diagram with using OMPC criteria to remove the spurious modes. 

 

Figure 3b. Stability diagram with using both OMPC and MPC criteria to remove the spurious modes. 

                                                 (a)                                                                             (b) 

 

Figure 4: (a) Extract vibration signal at frequency of 4.28 Hz,  

(b) Extract vibration signal at frequency of 5.26 Hz. 

As discuss before, in using the SSI-COV to identify the system dynamic characteristics there is still 

have some hard criteria, such as the size of data Hankel matrix or threshold of damping ratio, that need 

to be determined (cannot automatically setup). On the contrary, in applying BSS less pre-determined 

parameters is required, therefore, the BBS technique is used to minimize of using model parametersfor 

system identification. Fig. 5 shows the Fourier amplitude spectrum of the identified source signals (a 

total of 8 modes which are equivalent to the system modal responses). There is no spurious mode 

needs to be removed. It is confirmed that the modal frequency from each identified source is 

consistent with the result from SSI-COV, as shown in Table 2. The result is very consistence. Results 

of identification from SSI-COV and BSS-SOBI algorithms can also be also applied to the damage case 

(a 50% reduction of flexible stiffness between measurment pont 5~6).  Table 2 also lists the identified 
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system natural frequencies for comparison. It is observed that the change of natural frequencies of the 

damage case is obvious and particulary focus on the higher modes. The identified mode shapes from 

the mixing matric A of BSS for both damaged and undamaged case is shown in Fig. 6. It is observed 

that there is no significant difference among them, so the identified mode shapes are not a good 

indicator for damage detection even though there have obvious chang on the identified modal 

frequencies. To perform damage detection further analysis is required. 

 

 
Figure 5. fourier amplitude spectrum of each identified source signal using SOBI 

 

Table 2. Comparison on the identified natural frequencies between damaged and udamafged case. 

 
 

               
Figure 6. Comparison on the identified mode shapes between undamaged 

and damaged cases(SOBI method) 

 

5. Damage detection using reponse measurement 

To identify the damage location of the beam-like structure, three different approaches are used. First, 

taking the advantage of constructing the data Hankel matrix, a method based on null subspace and 

subspace damage detection is used [11].  It is defined the null-space damage index (DIn) as:
  

                                                             
 T

n0sUUmeanDIn                                                     (7) 
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where Us is the subspace of the target analysis matrix Y (multiplication of the transpose of data Hankel 

matrix) and Un0 is the null-space of the reference analysis matrix Y0. Different from the null-space 

damage index, the subspace damage index, DIs, is also defined as [11]: 










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K

i

K

i
S

)(

DI

1

1

i

T

i

i

T

s0s0

T

ii

T

i

yy

yUUyyy

                                               (8)

 

where yi is the ith column of matrix Y. The term in the denominator is used to normalize the damage 

index DIs so as to have DIs ranges from 0 to 1. The reference data (undamaged data) is needed to 

calculate the damage indices. Larger DIs or DIn means the monitor structure is different from the 

reference structure. 

It is also believed that data collected from near damage location may record significant response 

signals due to the occurrence of damage in the structural member. Damage index using the difference 

of Hilbert amplitude spectrum of the damaged data and the reference (undamaged) data can be used 

for locating the damage. It is now defined the Hilbert amplitude assurance criteria (HAAC) between 

the damage case and reference case of the Hilbert amplitude spectrum at sensor location i as ft,
i

e :  

 









t f t f

2
1

2d2Ref

t f

Refd

)f)(t,f)(t,(

f))(t,f)(t,(

j

j

HΗ

HH

e
j

ft,

                                                 (9) 

Large value of ft,
i

e indicated the similarity is higher at meaurement location i. As shown in Fig. 7a, at 

node 5 and node 6 the HAAC value is much lower which indicate the damage location. 

Finally, to verify the accuracy of the proposed method in damage location identification, the the 

multivariate AR model with order of 3 was used to identify the model parameters [12]. The analysis of 

multivariate AR model is conducted using all the measurement data. By using the identified model 

parameter from undamaged data, and adopt the damaged data for one step prediction for all 

measurement node, predict error can determined. Fig. 8 shows the error norm increases significanrtly 

near the location where element stiffness reduced. Comparison with the estimated damage location 

using the change of mode shape curvature is als shown in the same plot. The result shows the 

identified damage location is almost the same from three different approaches. 

                                              (a)                                                                       (b) 

    

Figure 7. (a) Calculate HAAC between undamaged and damaged cases to estimate the damage 

location; (b) Plot the change of mode shape curvature change (open circle) and the prediction error 

norm (close circle) with respect to measurement location. 

 

6. Conclusions 

This study presented three different system identification methods to extract the dynamic 

characteristics and damage detection by using output-only measurement of the bridge-vehicle 

interaction system. Through numerical simulation the dynamic response of a 2-span bridge subject to 

  undamaged vs. undamaged 

▓  undamaged vs. damaged 
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random travelling vehicle loads and with the consideration of surface roughness was generated for this 

study. A new developed automatic covariance-drive stochastic subspace identification (SSI-COV) 

algorithm, the second-order blind identification (SOBI) and multivariate AR-model are used to extract 

the dynamic characteristics of the bridge system. Technique to remove the spurious modes in 

developing the stability diagram of using SSI-COV is discussed. It is demonstrated that both methods 

can exactly identify the system natual frequencies and mode shapes. With the implemeation of 

reduction in element stiffness to simulate the damage of the bridge, through the proposed 

identification merthods, one can also detect the damage and identify the damage location by 

considering the mode shape curvature change, norm of the prediction error and Hilbert amplitude 

assurance criteria. It demonstrated that each proposed identyification method has it goodness as well 

as the drawback in system identifiction. For system with well separate modes either one of the method 

can detect the damage location well.  
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