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Efficient evaluation of the sample variance of
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Michal Černý
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13067 Prague, Czech Republic

E-mail: cernym@vse.cz

Abstract. Given a set of interval-valued data, a general problem is to compute bounds for a
particular statistic, such as sample mean or variance, variation coefficient or entropy. It is well
known that computation of the upper bound of sample variance is an NP-hard problem. Here
we consider a variant of an algorithm by Ferson et al., which is exponential in the worst case,
and investigate its behavior under a natural probabilistic model. A simulation study shows that
the undesirable case, which forces the algorithm to work in exponential time (and which appears
in the proof of NP-hardness), occurs very rarely in an environment when the interval data are
generated by probabilistic processes which are natural from a statistical viewpoint. The main
finding is that the the algorithm is practically very efficient and that the NP-hardness result
usually “does not matter too much”.

1. Introduction
Let x1, . . . , xn denote a set of one-dimensional data. Often we face the problem that the dataset
cannot be observed exactly. What we observe instead of x1, . . . , xn is a family of intervals [xi, xi],
i = 1, . . . , n, such that it is guaranteed that

xi ≤ xi ≤ xi, i = 1, . . . , n. (1)

We often meet interval datasets in practice. Example include:

• A real-valued data point x is affected by rounding to the nearest integer x̃; then we cannot
observe the true value x, but only the interval [x̃− 1

2 , x̃+
1
2 ] ∋ x. The same problem occurs

in scientific computing whenever we represent rational numbers by data types of fixed size.

• Another situation where we need to handle datasets of the form (1) is when data suffer
from imprecision. Measurement devices sometimes guarantee the measurement precision in
the form x̃ ±∆; that is, when the device reports the value x̃, then we only know that the
true value x lies in the interval [x̃−∆, x̃+∆].

• Further examples are encountered in econometrics, where we often need to work with
interval predictions of future values of economic quantities (such as inflation or interest
rates) or expert estimates, which are also often of interval nature.

• Another example is when we observe only daily mins/maxs of a continuous random process
(which is the case of financial data). Let x(t) be a trajectory of a random process with time
t ≥ 0, representing the price of an asset, say. We are often reported only daily minimum x
and maximum x. Then we only know that the value x(t) lies in [x, x].
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• In general, data subject to categorization, censoring or dicrestization can be usually
interpreted as intervals of possible values.

• Another example is natural in physics or chemistry: “constants” are rarely constant, e.g.
the gravity acceleration constant often should be treated as an interval of possible values
(since the true value is not constant, depending on the position on the Earth).

2. The main question
We are interested in computation of a particular characteristic of the dataset x1, . . . , xn, such as
sample mean or variance. But this cannot be done directly since we observe only the intervals
satisfying (1). Let S(x1, . . . , xn) be a statistic (or, generally, a continuous function). We need
to replace S by another statistic S∗(x1, x1, . . . , xn, xn) giving us similar information to S.

Example. Let x1, . . . , xn be sampled from N(µ, σ2), where the parameters µ and σ2 are
unknown and are to be estimated. The assumption of a particular distribution allows us to
write down the likelihood function and construct the max-likelihood estimator

(µ̂, σ̂) = argmax
µ∈R
σ≥0

n∏
i=1

[
Φ

(
xi − µ

σ

)
− Φ

(
xi − µ

σ

)]
,

where Φ stands for the cumulative distribution function of N(0, 1).

Another approach, complementary to the max-likelihood construction of the Example, is the
possibilistic approach; for details see e.g. [1]. This approach does not rely on the assumption of
a particular form of the underlying distribution. It simply considers an interval of all possible
values of the statistic S, regardless of the underlying distribution (which is often unknown). So,
the possibilistic version of the statistic S is the interval [S, S], where

S = max{S(x1, . . . , xn) : xi ≤ xi ≤ xi, i = 1, . . . , n}, (2)

S = min{S(x1, . . . , xn) : xi ≤ xi ≤ xi, i = 1, . . . , n}. (3)

Now the assumption (1) implies that S ∈ [S, S]. For example, when S is the sample mean
µ̂ = 1

n

∑n
i=1 xi, then we get the interval

[µ̂, µ̂] =

[
1

n

n∑
i=1

xi,
1

n

n∑
i=1

xi

]
.

In this text we will restrict ourselves to the case when S is the sample variance:

S(x1, . . . , xn) =
1

n− 1

n∑
i=1

xi −
1

n

n∑
j=1

xj

2

.

It is easily seen that computation of S is easy, since the optimization problem (3) reduces to
convex quadratic minimization, which is an efficiently solvable problem (see e.g. Vavasis [7]).
But now we arrive at the main problem, which has been proved in [2], [4]:

Theorem 1. For every fixed δ ≥ 0 it is NP-hard to compute a value Σ such that |S−Σ| ≤ δ.

Theorem 1 tells us that the value S cannot be computed efficiently, even if we do not insist on
an exact value but we are allowed to compute it only approximately with a prescribed absolute
error δ. So we can expect only algorithms working in time ≈ 2n or worse. The good news is
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that we can indeed do it in time 2n. The geometry of the optimization problem (2) shows that
we are to maximize a convex function over the box [x1, x1] × · · · × [xn, xn]. It follows that a
maximizer is in a vertex. Thus the 2n algorithm works as follows:

S = max{S(x1, . . . , xn) : xi ∈ {xi, xi}, i = 1, . . . , n}. (4)

However, when n is larger than 50 (say), the approach (4) is useless. So the main question is:
what to do then?

3. A practically useful approach

The situation with computation of S = max{ 1
n−1

∑n
i=1

(
xi − 1

n

∑n
j=1 xj

)2
: xi ≤ xi ≤ xi, i =

1, . . . , n} is not as bad as it might look from Theorem 1.
For an interval x = [xi, xi] we define its center point and radius

xC = 1
2(x+ x), x∆ = 1

2(x− x).

and denote x = [xC ± x∆].
Now the interval dataset [x1, x1], . . . , [x1, x1], can be denoted as x1 = [xC1 ± x∆1 ], . . . ,xn =

[xCn ± x∆n ].
Ferson et al. [4] proved the following result:

Theorem 2. Let k ∈ {2, . . . , n} be a number such that for every I ⊆ {1, . . . , n} such that |I| = k
we have ∩

i∈I
[xCi ± 1

nx
∆
i ] = ∅. (5)

Then S can be computed in time O(n22k).

The computation time O(n22k) can be expected to be much better than 2n in (4), since for
datasets appearing in practice it will often be k ≪ n. However, there are “extremal” examples:
when all intervals x1, . . . ,xn share a common point (which can happen, for example, when
xC1 = xC2 = · · · = xCn ), then the condition (5) is satisfied with no k.

So, when analyzing a particular dataset, a good approach is to find

k∗ = min

{
k :

∩
i∈I

[xCi ± 1
nx

∆
i ] = ∅, I ⊆ {1, . . . , n}, |I| = k

}

and assess whether the computation time n22k
∗
is acceptable; often it will be the case.

Remark. Observe that computation of k∗ is an easily solvable problem: it suffices to sort the
(2n)-tuple of numbers a1 := xC1 − 1

nx
∆, a2 := xC1 + 1

nx
∆, . . . , a2n−1 := xCn − 1

nx
∆, a2n := xCn + 1

nx
∆

into the form aπ(1) ≤ aπ(2) ≤ · · · ≤ aπ(2n), where π is a permutation, and for each interval

[aπ(i), aπ(i+1)] to check in how many intervals [xCi ± 1
nx

∆
i ] it belongs.

The crucial parameter affecting computational complexity is k∗. The main message of this
paper is: though the algorithm of Theorem 2 is exponential in the worst case, in practice we
usually find out that k∗ is reasonably low, so that the factor 2k

∗
“does not matter too much”.

This is what we will do in the next section.
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Figure 1. Distribution of k∗ for n ∈ {100, 200, 500} and λ ∈ {0.1, 0.5, 1, 5}.

4. A simulation
We will illustrate how k∗ behaves in a quite natural model: we select

xCi ∼ N(0, σ2), x∆i ∼ Exp(κ), i = 1, . . . , n. (6)

It seems reasonable to measure k∗ as a function of n and

λ =
var(x∆i )

var(xCi )
=

κ

σ
.

Remark. Though we select the data generating process in the particular form (6), further
simulations (not presented here) show similar behavior also for other distributions with bounded
variance.

The simulated distributions of k∗ for n = 100, 200, 500 and λ = 0.1, 0.5, 1, 5 are depicted in
Figure 1. It is not surprising that the average value of k∗ grows with both n and λ. But the
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Figure 2. Estimated mean value of k∗ for n ∈ {100, 200, 500} and λ ∈ [0.1, 10].

main message is that in the selected setup we encounter values of k∗ at most 13 (say), and
213 = 8192, which is still an acceptable computation time.

We also plot the (simulated) mean value k∗ as a function of λ in Figure 2.

5. Further results
As far the author is aware, the algorithm of Theorem 2 is the best practically useful tool for
computation of S. However, there are two more results which are complementary: the algorithm
by Dantsin et al. [3], which computes S in polynomial time under the condition that no interval
[xCi ± 1

nx
∆
i ] is a proper subinterval of another interval [xCj ± 1

nx
∆
j ]. Many datasets appearing in

practice fulfill this condition.
And finally we should mention the pseudopolynomial algorithm of Černý and Hlad́ık [2],

which is applicable under the condition that all numbers x1, x1, . . . , xn, xn are integers. Then,
the pseudopolynomial algorithm works in time O(n3M3), where

M = max{|x1|, |x1|, . . . , |xn|, |xn|}.

So, this algorithm is polynomial when M can be bounded by a polynomial in n. From a practical
viewpoint, the pseudopolynomial algorithm is fast when the dataset does not contain excessively
large numbers.

6. Conclusions
Though the problem of computation of S is NP-hard and inapproximable in general, we have
seen that with a very natural probabilistic data-generating model (6) we almost do not encounter
a hard instance which would require an excessively high computation time. This is good news for
practice since the problem of computation of S seems to be practically feasible, at least in many
cases. The most tempting question for further research is: given a probabilistic data-generating
model, how to estimate the probability that k∗ attains a high value? This question makes a
bridge to graph theory. It can be reformulated as follows. Let xi, i = 1, . . . , n, be random
intervals. Consider the interval graph G determined by the dataset; that is, let xi, i = 1, . . . , n,
be the vertices, and xi and xj (i ̸= j) are connected with an edge iff xi ∩ xj ̸= ∅. How could
we bound the probability that G has a large clique (under some reasonable assumptions, say
that the random centers and random radii of the intervals are iid with finite variance)? If an
estimate would show that the probability is reasonably small, we would have a proof that the
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algorithm of Theorem 2 works “fast” on average, even though in the worst case it still can be
exponential.
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