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Abstract. In this paper, we propose two new attacks on RSA with modulus N = p2q using
continued fractions. Our first attack is based on the RSA key equation ed− φ(N)k = 1 where

φ(N) = p(p − 1)(q − 1). Assuming that q < p < 2q, 2p5/3|p1/3 − q1/3| < 1
3
Nβ and d < N

1−β
2 ,

we show that k
d
can be recovered among the convergents of the continued fraction expansion of

e

N−(2N2/3−N1/3)
. Our second attack is based on the equation eX − (

N − (
ap2 + bq2

))
Y = Z

where a, b are positive integers satisfying gcd(a, b) = 1, |ap2 − bq2| < N1/2 and ap2 + bq2 =

N2/3+α with 0 < α < 1
3
. Given the conditions |Z| < 1

3
N1/3+αY and 1 ≤ Y ≤ X < 1

2
N

1
6
−α

2 ,
we show that one can factor N = p2q in polynomial time.

1. Introduction
Prior to 1970’s, the encryption and decryption were done only in symmetrical ways. It is only
until 1978, the RSA cryptosystem [13] went public and it is regarded now by the cryptographic
community as the first realization of the public key cryptosystem. The security of RSA is based
on the intractability to solve for the following four key equations; N = pq for large primes p and
q of the same size, the Euler totient φ(N) = (p − 1)(q − 1); the key equation ed − φ(N)k = 1
such that e is known and finally the modular eth-root problem c ≡ me (mod N).

The RSA cryptosystem is likely to have faster decryption if the secret exponent d is relatively
small. Nevertheless, in 1994 [10] observe that if d is small, say d < N1/4 so by exploiting
the key equation ed − φ(N)k = 1, he establishes that using a mathematical tool, namely the
continued fraction, then such secret exponent can efficiently be recovered. This is one of major
concern to implement RSA appropriately, because the knowledge of secret exponent d lead to
factoring N in polynomial time. Since then, many researchers have pursued the same direction
(i.e. using convergent by continued fraction method, for instance ([5], [6], [14]) purposely to
improve the bound δ > 1

4 for d < N δ. Besides the continued fraction approach, the usefulness
of Coppersmith’s theorem [7] widely applied for cryptanalyzing RSA key equations, such as
([1],[3],[8]). A survey on the mathematical cryptanalysis of the RSA cryptosystem can be found
in [4].

As mentioned in [1] such that moduli of the form N = p2q are frequently used in cryptography
and therefore they represent one of the most important cases. This assertion is confirmed by
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the fact that many RSA-like cryptosystem are designed using such modulus. For example,
([9],[11],[12], [15]).

Our contribution. Hence, in this paper, we contribute two new attacks on RSA-type
modulus of N = p2q using continued fractions. Our first attack is motivated from some previous
attacks on RSA using a good approximation of φ(N) = p(p − 1)(q − 1). We observe that for
N = p2q with q < p < 2q, if we use the term N − (2N2/3 − N1/3) as an approximation of
φ(N) satisfying the key equation ed−φ(N)k = 1 then k

d is one of a convergent of the continued

fraction e
N−(2N2/3−N1/3)

satisfying 2p5/3|p1/3 − q1/3| < 1
3N

β and d < N
1−β
2 .

The second attack is extending the result of [3] for N = p2q and e satisfying the variant
equation eX − (N − (ap2 + bq2))Y = Z where a, b are positive integers with gcd(a, b) = 1 such
that |ap2 − bq2| < N1/2, ap2 + bq2 = N2/3+α with 0 < α < 1

3 . We show tha if |Z| < 1
3N

1/3+αY

and 1 ≤ Y ≤ X < 1
2N

1
6
−α

2 , then N can be factored in polynomial time using the second attack.
The rest of this paper is organized as follows. In Section 2 we give an introductory to

continued fraction and some previous result regarding to the RSA cryptanalytic method using
continued fraction. Section 3 and Section 4 give details around our two approaches, respectively.
Finally, Section 5 concludes this paper.

2. Preliminaries
We start with the definition and an important theorem regarding to a continued fraction. We
then provide some previous results on cryptanalyzing RSA utilizing such theorem. In this work,
the symbol φ(N) is a notation for Euler totient function for its respective modulus N .

2.1. Continued Fraction

Definition (Continued Fraction). The continued fraction of a real number R is an expression
of the form

R = a0 +
1

a1 +
1

a2+
1

a3+...

where a0 ∈ Z and ai ∈ N − {0} for i ≥ 1. The numbers a0, a1, a2, . . . are called the partial
quotients. We use the notation R = [a0, a1, a2, . . .]. For i ≥ 1 the rational ri/si = [a0, a1, a2, . . .]
are called the convergents of the continued fraction expansion of R. If R = a

b is a rational
number with gcd(a, b) = 1, then the continued fraction expansion is finite.

There are various results and applications of continued fraction. A key role in all our argu-
ments is played by the following result.

Theorem 1 (Legendre). Let a, b, x, y be integer such that gcd(a, b) = gcd(x, y) = 1. Suppose
|ab − x

y | < 1
2y2

. Then x
y is a convergent of the continued fraction expansion of a

b .

2.2. Previous Attacks On RSA Using Good Approximation of φ(N)

In this section we provide some previous attacks on RSA using the convergents of good
approximations of φ(N).

2.2.1. Wiener’s Attack Firstly, let us consider the public exponent e and the private exponent
d of an RSA instance related by the key equation ed− kφ(N) = 1 rewritten as

∣∣∣∣
e

φ(N)
− k

d

∣∣∣∣ =
1

φ(N)d
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Suppose that
∣∣∣ e
φ(N) − k

d

∣∣∣ < 1
2d2

. Then by Theorem 1, k
d is a convergent of the continued fraction

expansion of e
φ(N) . However, the value of φ(N) is unknown. Suppose we replace φ(N) with

any known value ϕ such that it is an approximation of φ(N) and satisfies
∣∣∣ eϕ − k

d

∣∣∣ < 1
2d2

. This

idea was firstly introduced by Wiener [10]. Since the fact that ϕ is approximate to N , then he
uses ϕ = N which is publicly known. With the additional condition d < 1

3N
1/4, he shows that∣∣ e

N − k
d

∣∣ < 1
2d2

, which by Theorem 1 implies that k
d is a convergent of the continued fraction

expansion of e
N . This leads to the following result.

Theorem 2 [10]. Let N = pq be an RSA modulus with q < p < 2q. Let e < φ(N) and

d be a public and private exponent, respectively. If d < 1
3N

1/4, then
∣∣∣ e
φ(N) − k

d

∣∣∣ < 1
2d2

.

2.2.2. de Weger’s Generalization

Later, de Weger [5] observes that if the difference between two RSA primes (i.e. |p−q|) is small,
then N−2

√
N+1 is a better approximation to φ(N) instead of N . Replacing ϕ = N−2

√
N+1,

combining with ϕ > 3
4N ,N > 8d then k

d is a convergent of the continued fraction expansion of
e

N−2
√
N+1

which is satisfying the Theorem 1, as stated in the following result.

Theorem 3 [5]. Let N = pq be an RSA modulus with q < p < 2q with N > 8d and
|p − q| < Nβ . Let e < φ(N) with φ(N) > 3

4N and d < N δ be a public and private exponent,

respectively. If δ < 3
4 − β, then

∣∣∣ e
N−2

√
N+1

− k
d

∣∣∣ < 1
2d2

.

2.2.3. Maitra and Sarkar’s Attack

In [5], de Weger considered the situation that p and q are too close. This implies that p − q is
small. Later on, Maitra and Sarkar [14] consider the case that p and 2q are too close. This means
that |2q−p| is small. Assuming this, they showed that N− 3√

2

√
N+1 is a better approximation

to φ(N) instead of N .
Replacing ϕ = N− 3√

2

√
N+1 with N > 8d, [14] shows that k

d is a convergent of the continued

fraction expansion of e
N− 3√

2

√
N+1

satisfying Theorem 1, as follows.

Theorem 4 [14]. Let N = pq be an RSA modulus with q < p < 2q with N > 8d and
|2q − p| < Nγ . Let e < φ(N) and d < N δ be a public and private exponent, respectively. If

δ < 3
4 − γ, then

∣∣∣∣ e
N− 3√

2

√
N+1

− k
d

∣∣∣∣ < 1
2d2

.

2.2.4. Chen et.al’s Attack

In 2009, Chen et al. [6] generalize the result of [5] and [14] using the difference between two
multiples of primes |aq − bp| with a > b and assuming that the ratio of the RSA primes p

q is

close to a simple fraction b
a such that (b(a2+1)q−a(b2+1)p)(aq− bp)) > 0. Let |aq− bp| < Nγ .

Replacing ϕ = N − a+b√
ab

√
N + 1, [6] shows that k

d can be obtained from the continued fraction

expansion of e
N− a+b√

ab

√
N+1

which is satisfying the Theorem 1. The work of [6] obtain the same

result as [5] if a = b = 1, and get the same result as [14] when b
a = 1

2 . We present the result of
[6] as follows.
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Theorem 5 [6]. Let N = pq be an RSA modulus with q < p < 2q with N > 8d and
|aq − bp| < Nγ . Let e < φ(N) and d < N δ be a public and private exponent, respectively. If

δ < 3
4 − γ, then

∣∣∣∣ e
N− a+b√

ab

√
N+1

− k
d

∣∣∣∣ < 1
2d2

.

3. Our First Attack

In this section we prove our first attacks. We begin with a simple lemma fixing the sizes of the
prime factor of the RSA modulus.

Lemma 1. Let N = p2q with q < p < 2q. Then

2−1/3N1/3 < q < N1/3 < p < 21/3N1/3.

Proof. Suppose q < p < 2q. Multiplying by p2, we get N < p3 < 2N . Hence N1/3 < p <
21/3N1/3. Multiplying q < p < 2q by q2, we get q3 < N < 2q3 implies 2−1/3N1/3 < q < N1/3.
This terminates the proof. �

Let N = p2q. Then

φ(N) = p(p− 1)(q − 1) = p2q − p2 − pq + p = N − (p2 + pq − p).

The following result gives a interval for N − φ(N) = p2 + pq − p in terms of N . It shows that
if p ≈ q, then N − (

2N2/3 −N1/3
)
is a good approximation to φ(N), while if p ≈ 2q, then

N − ((
22/3 + 2−1/3

)
N2/3 − 21/3N1/3

)
is a good approximation to φ(N).

Lemma 2. Let N = p2q with q < p < 2q. Then

2N2/3 −N1/3 < N − φ(N) <
(
22/3 + 2−1/3

)
N2/3 − 21/3N1/3.

Proof. Suppose N = p2q with q < p < 2q. We have N − φ(N) = p2 + pq − p = p2 + N
p − p.

Define the function f such that f(p) = p2 + N
p − p. Then, the derivative is such that

f ′(p) = 2p− N

p2
− 1 = 2p− q − 1 > 0.

Then the function f is strictly increasing for the interval of p, that is (N1/3, 2N1/3) by Lemma
1. Hence f

(
N1/3

)
< f(p) < f

(
2N1/3

)
, which leads to

2N2/3 −N1/3 < p2 + pq − p <
(
22/3 + 2−1/3

)
N2/3 − 21/3N1/3.

Since p2 + pq − p = N − φ(N), this terminates the proof. �

Lemma 3. Let N = p2q and φ(N) = N − (p2 + pq − p) with q < p < 2q. Then

∣∣∣N −
(
2N2/3 −N1/3

)
− φ(N)

∣∣∣ < 2p5/3|p1/3 − q1/3|.
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Proof. Let N = p2q. Using φ(N) = p(p− 1)(q − 1) = p2q − p2 − pq + p = N − (p2 + pq − p), we
get

∣∣∣N −
(
2N2/3 −N1/3

)
− φ(N)

∣∣∣ =
∣∣∣p2 + pq − p−

(
2N2/3 −N1/3

)∣∣∣
=

∣∣∣p2 + pq − p−
(
2
(
p2q

)2/3 − (
p2q

)1/3)∣∣∣
= |p1/3 − q1/3| × p2/3

(
p+ p2/3q1/3 − p1/3q2/3 − 1

)

< |p1/3 − q1/3| × p2/3
(
p+ p2/3q1/3

)

< |p1/3 − q1/3| × p2/3 × 2p

= 2p5/3|p1/3 − q1/3|.

This terminates the proof.�

Theorem 6. Let N = p2q with q < p < 2q. Let 1 < e < φ(N) < N − (
2N2/3 −N1/3

)
satisfying ed − kφ(N) = 1 for some unknown integers φ(N), d, k. Assume φ(N) > 2

3N and

N > 6d. Let 2p5/3|p1/3−q1/3| < 1
3N

β and d < N δ. If δ < 1−β
2 then

∣∣∣∣ e
N−(2N2/3−N1/3)

− k
d

∣∣∣∣ = 1
2d2

.

Proof. We transform the equation ed− kφ(N) = 1 to

ed− k(N − (p2 + pq − p)) = 1

ed− k(N − (N − φ(N))) = 1

ed− k(N − (2N2/3 −N1/3) + (2N2/3 −N1/3)− (N − φ(N)) = 1

ed− k(N − (2N2/3 −N1/3)) = 1− k(N − φ(N)− (2N2/3 −N1/3))

Dividing by d(N − (2N2/3 −N1/3)), on the right hand side we get

∣∣∣∣
e

N − (2N2/3 −N1/3)
− k

d

∣∣∣∣ =
∣∣∣∣

e

N − (2N2/3 −N1/3)
− e

φ(N)
+

e

φ(N)
− k

d

∣∣∣∣

≤
∣∣∣∣

e

N − (2N2/3 −N1/3)
− e

φ(N)

∣∣∣∣+
∣∣∣∣

e

φ(N)
− k

d

∣∣∣∣

≤ e

∣∣∣∣∣
φ(N)− (N − (2N2/3 −N1/3))

φ(N)(N − (2N2/3 −N1/3))

∣∣∣∣∣+
∣∣∣∣
ed− kφ(N)

φ(N)d

∣∣∣∣

≤ e

∣∣∣∣∣
φ(N)− (N − (2N2/3 −N1/3))

φ(N)(N − (2N2/3 −N1/3))

∣∣∣∣∣+
∣∣∣∣
ed− kφ(N)

φ(N)d

∣∣∣∣

≤ e

∣∣∣∣∣
N − (2N2/3 −N1/3)− φ(N)

φ(N)(N − (2N2/3 −N1/3))

∣∣∣∣∣+
∣∣∣∣
ed− kφ(N)

φ(N)d

∣∣∣∣

Since e < N − (2N2/3 − N1/3) and ed − kφ(N) = 1 , then we have
∣∣∣ e
N−(2N2/3−N1/3)

− k
d

∣∣∣ <∣∣∣N−(2N2/3−N1/3)−φ(N)
φ(N) + 1

φ(N)d

∣∣∣. Using 2p5/3|p1/3 − q1/3| < 1
3N

β , d < N δ and φ(N) > 4d, we get
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∣∣∣∣∣
N − (2N2/3 −N1/3)− φ(N)

φ(N)
+

1

φ(N)d

∣∣∣∣∣ <
1

2
Nβ−1 +

1

4d2

<
1

2
Nβ−1 +

1

2
N−2δ

In order to satisfy the Theorem 1, it is suffice when we take β − 1 < −2δ, then δ < 1−β
2 .�

Corollary 1. Consider Theorem 6. If the unknown integer d be discovered from the con-
tinued fraction expansion of e

N−(2N2/3−N1/3)
, then N can be factored in polynomial time.

Proof. Suppose we obtained the secret exponent d according to Theorem 6. Observe that
from the relation of ed−1

k = φ(N) = p(p − 1)(q − 1), therefore computing gcd( ed−1
k , N) should

give the prime p.�

Hence, we design the following algorithm to further recovering the prime factorization of the
modulus N = p2q.

Algorithm 1.

INPUT: The public key modulus (N, e) satisfying N = p2q and Theorem 6.
OUTPUT: The prime factors p, q.

1. Compute the continued fraction e
N−(2N2/3−N1/3)

.

2. For each convergent ki
di

of e
N−(2N2/3−N1/3)

, compute φ(N)i =
edi−1
ki

.

3. Compute g = gcd(φ(N)i, N).
4. If 1 < g < N , then stop.

4. Our Second Attack

In this section we describe our second attack which is based on the work of Nitaj [3]. We extend
the method to the modulus N = p2q instead of N = pq. We firstly provide Nitaj’s result as
follows.

Theorem 7. Let N = pq with q < p < 2q. Let a
b be an unknown convergent of the con-

tinued fraction expansion of q
p with a ≥ 1 and |ap− bq| < 1

2N
1/2−α. Let e be a public exponent

satisfying the equation eX − (N − (ap+ bq))Y = Z with gcd(X,Y ) = 1. Set ap+ bq = N1/2+α

with 0 < α < 1
2 . If |Z| < N1/2+αX and 1 ≤ Y ≤ X < 1

2N
1/4−α/2, then N can be factored in

polynomial time.

Proof. Refer [[3], Theorem 3].

We are now ready to give our second attack. Let the integer closest x denoted as [x].

Lemma 4. Let N = p2q with q < p < 2q. Let a, b be integers with gcd(a, b) = 1. Let

ap2 + bq2 = N2/3+α with α < 1
3 . If |ap2 + bq2 − S| < 1

3N
1/3−α then abq =

[
S2

4N

]
.
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Proof. Set S = ap2 + bq2 + x. Observe that

(ap2 − bq2)2 = (ap2)2 − 2(ap2bq2) + (bq2)

= (ap2)2 + 2(ap2bq2)− 2(ap2bq2)− 2(ap2bq2) + (bq2)

= (ap2 + bq2)2 − 4(ap2bq2)

= (ap2 + bq2)2 − 4abqN.

Hence we get

(ap2 − bq2)2 = (ap2 + bq2)2 − 4abqN. (1)

Now, consider

S2 − 4abqN = (ap2 + bq2 + x)2 − 4abqN

= (ap2 + bq2)2 + 2x(ap2 + bq2) + x2 − 4abqN.

Using (1), we can rewrite the above equation as

S2 − 4abqN = (ap2 − bq2)2 + 2x(ap2 + bq2) + x2. (2)

Suppose |ap2 − bq2| < N1/2. Hence, using |x| < 1
3N

1/3−α, then (2) becomes

|S2 − 4abqN | < (N1/2)2 + 2|x|N2/3+α + x2

< N + 2(
1

3
N1/3−α)N2/3+α + (

1

3
N1/3−α)2

= N +
2

3
N +

1

9
N2/3−2α

= N(1 +
2

3
+

1

9
N−1/3−2α)

< 2N

Thus, we have |S2−4abqN | < 2N . If we divide |S2−4abqN | by 4N , then S2

4N −abq < 2N
4N = 1

2 .

It follows that abq =
[
S2

4N

]
. �

Lemma 5. Let N = p2q with q < p < 2q. Let a, b be integers with gcd(a, b) = 1 such
that ap2 + bq2 = N2/3+α with α < 1

3 . Let e be a public exponent satisfying the equation

eX−(N−(ap2+bq2))Y = Z with gcd(X,Y ) = 1. If |Z| < 1
3N

1/3+αY and 1 ≤ Y ≤ X < 1
2N

1
6
−α

2 ,

then Y
X is a convergent of continued fraction e

N .

Proof. Set ap2+bq2 = N2/3+α with α < 1
3 . Rearrange the equation eX−(N−(ap2+bq2))Y = Z

as

eX −NY = Z − (ap2 + bq2)Y. (3)

Now, suppose |Z| < 1
3N

1/3+αY and 1 ≤ Y ≤ X < 1
2N

1
6
−α

2 . If we divide (3) by NX then we
get
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∣∣∣∣
e

N
− Y

X

∣∣∣∣ =
∣∣∣∣
Z

NX
− (ap2 + bq2)Y

NX

∣∣∣∣

≤
∣∣∣∣
Z

NX

∣∣∣∣+
(ap2 + bq2)Y

NX

≤
∣∣∣∣
Z

NX

∣∣∣∣+
(ap2 + bq2)X

NX

<
1
3N

1/3+αX

NX
+

N2/3+αX

NX

< N−2/3+α +N−1/3+α

< 2N−1/3+α

Observe that, for X < 1
2N

1
6
−α

2 then
∣∣ e
N − Y

X

∣∣ < 1
2X2 . Hence by Theorem 1, Y

X is a convergent
of continued fraction e

N .�

Theorem 8. Let N = p2q with q < p < 2q. Let a, b be integers with gcd(a, b) = 1
such that such that |ap2 − bq2| < N1/2. Let e be a public exponent satisfying the equation
eX − (N − (ap2 + bq2))Y = Z with gcd(X,Y ) = 1. Set ap2 + bq2 = N2/3+α with α < 1

3 . If

|Z| < 1
3N

1/3+αY and 1 ≤ Y ≤ X < 1
2N

1
6
−α

2 , then N can be factored in polynomial time.

Proof. Suppose |Z| < 1
3N

1/3+αY and 1 ≤ Y ≤ X < 1
2N

1
6
−α

2 with gcd(X,Y ) = 1. Hence by

Lemma 5, Y
X is a convergent of continued fraction e

N . Rearrange (3) as (ap2+bq2)Y −NY +eX =
Z. Dividing by Y , we get

(ap2 + bq2)−N +
eX

Y
=

Z

Y
. (4)

Set S = N−eX
Y . Then (4) can be written as (ap2 + bq2) − S = Z

Y . Hence, we have

|(ap2 + bq2) − S| = |Z|
Y < |Z| < 1

3N
1/3+α. By Lemma 4, if |ap2 − bq2| < N1/2 and

|ap2 + bq2 − S| < 1
3N

1/3−α then
[
S2

4N

]
= abq. It follows that we obtained q = gcd

([
S2

4N

]
, N

)
.�

According to Theorem 8, we design the following algorithm to obtain the prime factor of
N = p2q as follows.

Algorithm 2.

INPUT: The public key modulus (N, e) satisfying N = p2q and Theorem 6.
OUTPUT: The prime factors p, q.

1. Compute the continued fraction e
N .

2. For each convergent Y
X of e

N , compute S = N−eX
Y .

3. Compute
[
S2

4N

]
.

4. Compute h = gcd
([

S2

4N

]
, N

)
.

5. If 1 < h < N , then stop.
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5. Conclusion

This paper shows two new attacks on RSA-type modulus of N = p2q using continued fractions.
The first attack we note that 1 < e < φ(N) < N − (2N2/3 − N1/3) is a good approximation
of φ(N) leading to get d satisfying 2p5/3|p1/3 − q1/3| < 1

3N
β and d < N δ. With this result, we

come up with an algorithm for factoring N = p2q, as we described in Algorithm 1.
Concerning to the second attack with e satisfying the equation eX− (N − (ap2+ bq2))Y = Z

such that |ap2 − bq2| < N1/2, then we show that this result also can find the primes factor of N
in polynomial time fulfilling the condition ap2+ bq2 = N2/3+α with 0 < α < 1

3 , |Z| < 1
3N

1/3+αY

and 1 ≤ Y ≤ X < 1
2N

1
6
−α

2 .
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