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Abstract. Multivariate techniques using machine learning algorithms have become an integral
part in many High Energy Physics data analyses. This article is intended to sketch how this
development took place by pointing out a few analyses that pushed forward the exploitation
of these powerful analysis techniques. This article does not focus on controversial issues like
for example how systematic uncertainties can be dealt with when using such techniques, which
have been widely discussed previously by other authors. The main purpose here is to point to
the gain in physics reach of the physics experiments due to the adaptation of machine learning
techniques and to the challenges the HEP community faces in the light a rapid development in
the field of machine learning if we want to make successful use of these powerful selection and
reconstruction techniques.

1. Introduction
Multivariate techniques have been used successfully since the very beginning of High Energy
Physics data selection and reconstruction. The widespread use of TMVA [1], a software
package which gives easy access to a variety of machine learning algorithms and which is
integrated in the popular ROOT [2] analysis framework, helped to increase the knowledge about
these techniques and to overcome prejudice against using such - at first glance “black box” -
selection algorithms. While important issus like possible complications in addressing systematic
uncertainties, apparent lack of control about the actual important figure of merit that a selection
should optimise and other challenges are well known and have been reported previously by a
number of authors (see for example [3]), this report focuses on the challenges of staying up to
date with the rapid development in the field of machine learning in order to get the most out
the very expensive accelerators and detectors.

2. Past Successes with Multivariate Analyses in HEP
This section does not intend to give a full historic overview about the use of multivariate
techniques in high energy physics, but merely tries to point out a few examples which are meant
to illustrate the importance of venturing into new analysis techniques in order to boost the
performance of an analysis. In fact, one of the most powerful multivariate pattern recognition
tools for image recognition, the human visual cortex, was used in the very early days when
photos of bubble chambers were analysed. Only with the advent of computer based analysis of
large data sets, many physicists reverted to simple one-dimensional, rectangular cuts to select
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their events of interest. These cuts are easy to formulate in a program code, their operation is
easy to understand and interpret and last but not least, they are easy to communicate.

Nonetheless, there were permanent successful attempts to venture into more sophisticated
selection algorithms, as for example the näıve Bayesian (Likelihood) τ -particle identification
algorithm (“TAUPID”) in ALEPH [4]. In the literature one can also find even earlier attempts
of promoting even more complicated techniques like neural networks at dedicated HEP statistics
conferences. However, it was also already then pointed out that the adaptation of these powerful
classification techniques in high energy physics is ’somewhat slow’ as expressed for example in
the summary of [5]: The progress of exploiting ANN in high energy physics has been somewhat
slow. Partly this conservatism is due to the a misconception that ANN approaches contain an
element of ”black box magic” as compared to conventional approaches. I hope I have convinced
the reader that this is not the case. Statistical interpretation of the answers makes the ANN
approach as well-defined to use as the discriminant ones.

As far as the author is aware, the use of multivariate pattern recognition algorithms was
basically taboo in new particle searches until the LEP2 aera Higgs searches [6] when people
started to apply Likelihood or Neural Network algorithms and overcame widespread scepticism
by demonstrating the superior results obtained compard to classical rectangular cuts.

With the pioneering analysis of MiniBooNE that used for the first time a Boosted Decision
Tree in a HEP analysis as outlined in [7], a lot of interest in has been raised in the community
to exploit this “new” selection algorithm. Subsequently, boosted decision trees for sure became
the favourite algorithm within the TMVA framework used in many analysis, including the first
evidence for the Higgs Boson as reported by CMS [8].

Boosted Decision Trees are of course popular for a good reason. They are very robust,
meaning they do not require very careful tuning in order to get close to their optimal
performance, and powerful. They had for this reason sometimes been called the best ’out
of the box’ classifiers. Simple Decision Tree are easy to interpret and very similar to standard
rectangular cuts. Each branch of the tree simply represents a cut sequence. Boosted decision
trees however loose basically all the advantage of easy interpretation or understanding of the
selection during the boosting sequence. They are probably as difficult to understand as Neural
Networks in terms of how they place the decision boundaries in the feature space of the
discriminating variables that are fed into it. Moreover, if one carefully examines the decision
boundary that boosted decision trees parameterise if a certain threshold is imposed on the
response variable, this is typically a very irregular, non smooth hyperplane. This is easily
understandable from the fact that the Boosted Decision Trees’ response is a weighted sum of
rectangular volumes that are given by each of the individual trees as signal or background like
areas. Even for very large number of boosting steps, this feature remains1 as typically the
boosting algorithm intrinsically doesn’t give a sizeable contribution to those classifiers in the
ensemble that are derived at late boosting steps. Therefore no matter how many boosting steps
there are, they will not really smooth out the decision boundaries.

On the other hand, the decision boundaries from neural networks, as they are a superposition
of smooth activation functions of the various nodes, are generally much smoother and for sure,
after looking at a comparison of the decision boundaries from a Neural Network and a Boosted

1 AdaBoost, the most popular boosting algorithm, for example keeps reweighting events of the original training
data sample such that event, which are mis-classified by the previously trained classifier (decision tree) in the
ensemble of boosted classifiers, keep getting higher weights compared to events out of the training set that we
correctly classified. This results in variable distributions of the reweighted training set that keep getting more
and more equal between signal and background. Decision trees trained on these reweighted data samples then
obviously have a larger error rate on the training set and hence get a smaller weight in the ensemble of classification
trees. Eventually the error rate approaches 50% which translates to a contribution of to the boosted ensemble
classifier of zero. This behaviour is actually a very nice feature of the boosting algorithm, as it removes the
necessity of actively carefully choosing the number of boosting steps as configuration parameter.
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Decision Tree, most physicist would rather evaluate possible systematic on a smooth Neural
Network output rather than on a very irregular one Boosted Decision Tree. Unfortunately,
standard Neural Networks are much harder to train properly, particularly with limited amount
of labelled training data and hence they are in reality often less performant than Boosted Decision
Trees and therefore less popular.

3. New Developments in Machine Learning and Multivariate Analysis
At this point it is worth noting that at the time Boosted Decision Trees became popular in the
HEP community, the hype about Boosted Decision Tree in the machine learning community
had been already over and new developments in the field of neural network training have all but
totally revolutionised the main areas of pattern recognition like image and speech recognition. In
2006/2007, a major breakthrough in neural network research finally allowed successful training
of so called ’deep neural networks’2. This was achieved using a meaningful initialisation of
the weights3 connecting the neurons in each layer before starting the usual training via back-
propagation. This initialisation is done by pre-training each individual layer as Restricted
Boltzmann Machines [9] or as auto-encoders [10].

This next generation of neural networks proved extremely powerful and it seems that all
major players in the ’industry’ that apply machine learning at a large scale (e.g. Google,
Facebook, Microsoft and IBM) are replacing their hand crafted and fine tuned speech and
image recognition algorithms by deep neural networks which often substantially outperform
their predecessors. This development can be followed in the news where major acquisitions of
deep learning companies or hiring of deep learning specialist from academia by one of these
companies are reported.

Also in physics, first attempts have been made to apply these new techniques and some
promising results have been reported [11]. In order to understand how profound the changes
are that other fields have experienced due to the advances of deep learning technologies, let’s
imagine we discard all of our carefully, with physics knowledge crafted high level features like
invariant masses, jets, secondary vertices or impact parameters and let a large deep network
learn these features by itself from simple 4-vectors as input.4 While this might not be the best
approach in HEP, the technology might well be useful for much more changes to our analyses
than a simple replacement of a Boosted Decision Tree by a Deep Neural Network.

Given the sweeping success the paradigm change in terms of which type of features are used
as input to the machine learning together with the deep learning network technologies, it would
certainly be unwise not to study such and other possibilities of deep network applications in
detail for our HEP data. Rather than lagging behind in the application of modern machine
learning techniques, high energy physicist should rather be using state of the art technologies if
not trying to drive the development as it has been in so many other fields.

An interesting additional aspect of these deep neural networks is that the layer-by-layer pre-
training uses unlabled data, meaning it doesn’t need to be known whether an event is of type
“signal” or “background”. This of course gives the potential to use recorded data from the
experiment rather than extensive amounts of generated Monte Carlo events for this step.

A completely unsupervised training of a large deep layer neural network on HEP data might
eventually perhaps not ’discover cats’ as it was done by Google [12], but could be used for

2 Neural Networks with more than 2 hidden layers are typically referred to as ’deep networks’
3 Previously, the weights of a neural network were initialized randomly with small values, such that the network
acted in the beginning much like a random linear classifier which through backpropagation was intended to quickly
learn the best linear separating boundary which would then gradually be refined as the training process progresses.
4 In speech recognition for example, over the years carefully tuned high level features (phonemes) which were
previously used as input to the learning algorithms have apparently been simply replaced by a large deep neural
network which learns these features.
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completely model independent searches, or perhaps help in understanding the detector and hence
be a vital tool for systematic studies. Obviously, the requirements in HEP are not the same as
for speech or image recognition and it will probably require a substantial effort to evaluate the
possibilities of these new Deep Learning strategies. Research on these Deep Neural Networks is
developing at a fast pace5 Understanding such complex algorithms and their behaviour on such
data samples will certainly exceed the scope of a typical PhD thesis, let alone the ever more
complex code base required for building, training and monitoring such advanced deep networks.
It should be noted that particular effort is necessary to monitor and understand the working of
these algorithms in order to understand all systematic aspects 6

4. Summary
It is hard to quantify the impact of the increased use of sophisticated MVA techniques on the
physics output of our current HEP experiments, but one could perhaps say that an improvement
of selection performance w.r.t a simple cut based analysis of somewhere between 5% and 20%
are certainly not unheard of, but rather common. This leads to a very substantial increase of
the physics reach for our experiments! Compared to how much an equivalent gain in physics
reach by upgrading an accelerator or detector would cost, funding of machine learning reasearch
and development for physicists should be regarded as an at least equally good investment.

Simply reaching out to the other groups that do either plain machine learning research or
within the context of other industrial or business applications as it is has been done so far with
the funding of interdisciplinary activities which lead to initiatives like the Kaggle Higgs Challenge
(https://www.kaggle.com/c/higgs-boson) is probably not enough to really make proper use of
modern machine learning in HEP.

In order to deal properly with the ever increasing complexity of machine learning it will be
difficult for individuals to really grasp the full potential and manage the pitfalls of those analysis
techniques. While it was still possible to simply program your own likelihood selection algorithm,
this was already much more challenging with standard neural networks or boosted decision trees
and will be even more so with the new algorithms. But rather than simply adopting tools
developed outside of (high energy) physics, the community would certainly profit considerably
from an engagement into an ’in house’ machine learning development and support group for
HEP usage, similar as it was done with ROOT [2], which has a CERN funded core development
and support team for analysis software dedicated to physicists. This would help to ensure that
the data we have collected in our experiments is exploited in the best way using state of the art
analysis technologies while making sure that we understand all the results to the level that we
feel comfortable with as physicists.

Perhaps our data selection is less difficult than pattern recognition in other fields and we do
not need such sophisticated analysis tools. However it would certainly be a loss if the possible
gains would not be thoroughly studied. These new machine learning techniques are thorougly
studied in the context of self driving cars for example, where ’errors’ are much more severe
than an under/over estimated systematic error on a physics parameter. This clearly shows that
potential criticism about the use of such machine learning algorithms in High Energy Physics
because we need to understand our systematic uncertainties much more thoroughly than it is
the habit in other field, does not seem very compelling. Moreover it simply means that more
effort is needed to be put into a deeper understanding of these state of the art techniques within

5 Recently it has been reported for example that using so called ’rectified linear units’ [13] instead of the typical
sigmodial activation functions used in traditional neural networks or ’dropout’ [14] again may lead to major
improvement of (deep) neural network performances
6 Note: Systemiatic uncertainties or errors never are a result of a particular training of an algorithm. The come
into effect once we do not exactly understand the efficiency and background rejection of the trained algorithm,
globally and for individual regions in phase space.
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the context of high energy physics.
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