
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Constructing a small modular stellarator in Latin
America
To cite this article: V I Vargas et al 2015 J. Phys.: Conf. Ser. 591 012016

 

View the article online for updates and enhancements.

You may also like
Major issues in the design and
construction of the stellarator of Costa
Rica: SCR-1
J Mora, V I Vargas, L F Villegas et al.

-

Land cover dynamics following a
deforestation ban in northern Costa Rica
M E Fagan, R S DeFries, S E Sesnie et al.

-

Converging science and literature cultures:
learning physics via The Little Prince
novella
A Godínez-Sandí, D Fallas-Padilla, S
España-Tapia et al.

-

This content was downloaded from IP address 3.17.74.153 on 25/04/2024 at 21:20

https://doi.org/10.1088/1742-6596/591/1/012016
https://iopscience.iop.org/article/10.1088/1742-6596/370/1/012066
https://iopscience.iop.org/article/10.1088/1742-6596/370/1/012066
https://iopscience.iop.org/article/10.1088/1742-6596/370/1/012066
https://iopscience.iop.org/article/10.1088/1748-9326/8/3/034017
https://iopscience.iop.org/article/10.1088/1748-9326/8/3/034017
https://iopscience.iop.org/article/10.1088/1361-6552/aad721
https://iopscience.iop.org/article/10.1088/1361-6552/aad721
https://iopscience.iop.org/article/10.1088/1361-6552/aad721
https://iopscience.iop.org/article/10.1088/1361-6552/aad721
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvO4-1MWOXEGMID8EZnvps8DEYP0lO-tE1iGFTW3yhX9U1fEu3IrWTG3Xade4tJCtlNb4KPr117-DwGLUuIs76qOV8AAT3VbRKrsyCSNOMzSg7JTijpiWy6MajJakw4YEWNYEfSdzAbUPdmmoWTNg_V9aLlGA9dlnYq0uP3qS8jNrzLHY_amMst_8AB1EjNYrFd408vfdMwrwxTCAFNxVjz59TiX4v0Bkq61flbXqeOqVxfINReSZ2f1WuYkjZfMtgpBvo8P48TkL2SWFgsgYnlBe9yWIvtwV1oCSystQsOnOyb378X8o8KUQCMGp8O-39Z1uq-JE1l9XtFr_PGXPkzey1KZA&sig=Cg0ArKJSzNLCElrC9vV4&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


 

 

 

 

 

 

Constructing a small modular stellarator in Latin America  

V.I. Vargas, J. Mora, J. Asenjo, E. Zamora, C. Otárola, L. Barillas, J. Carvajal-

Godínez, J. González-Gómez, C. Soto-Soto and C. Piedras  
Plasma Laboratory for Fusion Energy and Applications, Cartago, Costa Rica 

  Instituto Tecnológico de Costa Rica, Cartago, Costa Rica 

 

E-mail: ivanvargasblanco@gmail.com. 

 
Abstract. This paper aims at briefly describing the design and construction issues of the 

stellarator of Costa Rica 1 (SCR-1). The SCR-1 is a small modular stellarator for magnetic 

confinement of plasma developed by the Plasma Laboratory for Fusion Energy and Applications 

of the Instituto Tecnológico de Costa Rica (ITCR). SCR-1 will be a 2-field period small modular 

stellarator with an aspect ratio > 4.4; low shear configuration with core and edge rotational 

transform equal to 0.32 and 0.28; it will hold plasma in a 6061-T6 aluminum torus shaped 

vacuum vessel with an minor plasma radius 54.11 mm, a volume of 13.76 liters (0.01 m3), and 

major radius R = 238 mm. Plasma will be confined in the volume by on axis magnetic field 43.8 

mT generated by 12 modular coils with 6 turns each, carrying a current of 767.8 A per turn 

providing a total toroidal field (TF) current of 4.6 kA-turn per coil. The coils will be supplied by 

a bank of cell batteries of 120 V. Typical length of the plasma pulse will be between 4 s to 10 s. 

The SCR-1 plasmas will be heated by ECH second harmonic at 2.45 GHz with a plasma density 

cut-off value of 7.45×1016 m-3. Two magnetrons with a maximum output power of 2 kW and 3 

kW will be used.   

Keywords. Magnetic confinement; Stellarator; low shear configuration; small modular 

stellarator 

1. Introduction 

Stellarators are toroidal devices where the required rotational transform of the magnetic field lines 

(needed to confine the plasma) is generated by external field coils and not via an induced net toroidal 

plasma current as in Tokamaks. This confinement scheme has the advantages that, in principle, steady-

state plasma operation is possible and the machine does not have to brace itself against the strong 

impulses generated by short pulses of high current, such as the halo-currents generated by plasma 

disruptions in Tokamaks. At the cost of the increased complexity in toroidal asymmetry, the properties 

of the Stellarator’s magnetic geometry can be tailored to suit reactor needs. Research focusing on the 

plasma confinement properties of different Stellarator fields and their suitability for reactor sized devices 

is an area of ongoing research. 

In a toroidal device, the magnetic field lines need to be helically twisted in order to prevent polarization 

of the plasma due to the opposite vertical directions of ions and electrons curvature and gradient drifts 

that would otherwise prevent confinement [1]. In a Stellarator the net toroidal current that is required to 

be carried the plasma is zero and the confining magnetic field is generated solely by external field coils. 

This requires some of the coils to helically revolve around the plasma. 
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The goal of Stellarator research —as well as tokamak research— is to prove that the concept is suitable 

for a fusion reactor. Thus it is necessary to determine the magnetic field structure that can confine a 

plasma at sufficiently high density, n, and temperature, T, with sufficiently long energy confinement 

time τ_E, in order to meet the Lawson criterion [2]. Large Stellarator experiments have  been developed 

to explore the attractiveness of the concept: for example, ATF in Oak Ridge, USA (R = 2.1 m); CHS (R 

= 1.0 m), LHD (R = 3.9 m) and CHS-qa (R = 1.5 m) in Tokio, Japan; Heliotron E (R = 2.2 m) and 

Heliotron J (R = 1.2 m) in Kyoto, Japan; TJ-II (R = 1.5 m) in Spain, W7-AS (R = 2.0 m) and W7-X (R= 

5.5 m) in Germany, HSX (R = 1.2 m) and QPS (R = 0.9 m) in USA. 

Recently, there has been an interest on developing small low cost Stellarators (major radius less than 

0.9 m). A small Stellarator (R=119 mm) called Ultra Small Torus (UST_1) [3] was designed, built and 

operated by the Spanish engineer Vicente M. Queral on a budget of under $4000, demonstrating for the 

first time that low-cost techniques can be used to build small, functioning Stellarators. 

UST_1 is a 2-field period modular Stellarator with an aspect ratio ≈ 6, formed by 12 partially optimized 

modular coils. Each coil is formed by 6 turns of flexible copper conductor wound in a groove machined 

in a circular toroidal plaster frame by a specially designed toroidal milling machine. Electron cyclotron 

frequency heating (ECH) at the second harmonic (B0 = 46 mT) heats the plasma using a 0.8 kW, 

2.45GHz commercial magnetron. Typical length of the plasma pulse is 2 s. Toroidal field (TF) current 

per coil is 2.3 kA-turn. Also the plasma volume is 1.1 liters, major radius R = 119.2 mm, average minor 

radius a ≈ 21 mm. Low shear configuration with core and edge rotational transform equal to 0.32 and 

0.28, optimized to occupy a narrow range just below 1/3 in order to avoid high-order rationals and large 

magnetic islands. Additionally, UST_1 was optimized for other important plasma parameters, such as 

large plasma size, deep magnetic well, low ripple, and low variance of the minima of |B|. Optimization 

is modest because the coils are constrained to lie on a circular torus [3]. Plasma parameters for this small 

device deduced from ISS04v1 [4] with B0 = 0.1 T, enhancement factor = 0.1, and PECH = 400 W are very 

modest, on the order of Te ~ 2 eV, ne ~ 2×1017 m-3, and τE ~ 0.2 μs, with β ~ 0 [3]. 

This paper presents the design of a small modular Stellarator that uses the same magnetic configuration 

as the UST_1. Stellarator of Costa Rica 1 (SCR-1) is built to a scale twice the size of UST_1 in length 

dimensions, stronger magnetic field (0.0438 T), increased heating power (5 kW), and has an minor 

plasma radius (54.11 mm), plasma volume of 13.76 liters (0.01 m3), estimated electron temperature (13 

eV) and electron density (5×1016 m-3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main objectives of SCR-1 are to improve the engineering of the UST_1 device, focus on training 

human resources, identifying of problems related to the design and construction of small modular 

stellarators and also investigate the plasma physics in a small modular stellarator (R = 238 mm). 

This article is organized as follows. The system description is described in detail in section 2, where 

each part of the SCR-1 will be presented, including its characteristics and parameters, and a description 

of engineering approach taken and problems overcome by the authors during the designing of the device, 

 

Figure 1. SCR-1 vacuum vessel drawing. 
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and their solutions. Expected plasma parameters are also presented. Conclusions are summarized in 

section 3. 

 

2. System description 

2.1. Organization of the SCR-1 Project (Heading 2) 

The structure of the project involves about 4 engineering and physics undergraduate students, mainly 

from the ITCR, 3 supervisor engineers, under the supervision of two PhDs in plasma physic and nuclear 

fusion. 

The project is divided into the following areas: Coil Systems and Layer Materials, Vacuum Systems, 

Power Supply Systems, Heating System, Diagnostics, Safety, Data Acquisition and Control Systems, 

the area of Magnetic Fields, Simulation and Modeling; and finally, the Administrative, Technical, and 

General Supervising areas. 

2.2. Vacuum Systems 

The torus-shaped vacuum vessel of the SCR-1 will be made of 6061-T6 aluminum. Although using 

austenitic 304L grade stainless steel was analyzed, it was discarded because of the difficulty to 

manufacture parts according to the device dimensions and the vacuum vessel price is higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The vacuum vessel of 10 mm thickness will have a volume of 0.0434 m3, with an external radius of 

364.1 mm, internal radius of 112.1 mm and major radius R = 238.1 mm. Since the vacuum vessel must 

  

  

  

  

Figure 2. Stages of the vacuum vessel construction. 
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support a minimum pressure of 10-6 Torr (10-6 mbar), it will be used 6061-T6 aluminum in TIG welding 

Process. 

The vessel will have 24 conflat ports with diametric dimensions of 6" CF, 4-1/2" CF, 3-3/8" CF and two 

rectangular shaped; available for different applications, as seen in Fig. 1 and Fig. 2. 

The vacuum vessel design includes more ports than required by diagnostics, in order to support the 

future incorporation of more components if required.  

For the construction of the torus shape two aluminum parts were melted subsequently they were polished 

on the inside by using a multi-axis CNC machine. Once the above was completed, the pieces were 

welded using the TIG welding process as shown in Figs. 2. Finally they were performed external 

polishing and liquid penetrant and porosity tests were done. CF Ports were also machined of aluminum 

as shown Fig 2. It has decided to use the same design the aluminum CF port of the vacuum vessel for a 

Cusp Confinement Plasma call MPDX (Madison Plasma Dynamo Experiment) from the University of 

Wisconsin, Madison [5]. 

The main vacuum system component is the vacuum pumps group, which is composed by one mechanical 

pump able to reach 10-4 Torr, and one turbo-molecular pump that can then achieve a further reduction 

in pressure to 10-10 Torr. An automated pump system was chosen, integrating the controllers of both 

pumps. This group has additional equipment such as RS485 communication, vacuum convectron, ion 

gauge sensors and RGA (Residual Gas Analyzers) for possible gas leak issues. 

2.3. Coil Systems 

The magnetic field that confines the plasma will be produced by 12 modular (irregularly shaped, non-

planar) copper coils. Modular coils (see Fig. 1) in principle allow the best possible confinement of the 

plasma to be achieved. The geometry of the coils was obtained by engineer Vicente Queral [3], and has 

been optimized as discussed in section 1. 

Each modular coil will have 6 turns, made of AWG#4 wire, and a current of 767.8 A per turn providing 

a total toroidal field (TF) current of 4.6 kA-turn per coil. It is not possible to add more turns due to the 

geometric constraints of the coils and vessel. Heat transfer simulation results from the modular coils are 

shown in Fig 3. The thermal behavior of copper wire by electrical current pass in the modular coil was 

simulated using COMSOL Multiphysics software and other methods. Temperature, resistance, voltage 

and power calculations as a function of time were performed for the electrical circuit under different 

wire configurations per modular coil to select the power supply taking into account the available budget. 

The wire configurations of 1, 2 and 4 turns per coil were discarded due to the high price of the power 

supply (USD > 50 k $). Also the wire configurations of 8 and 12 turns were also discarded because the 

clashes occurring between close coils when the height per coil increased. Finally it was decided 6 turns 

per coil (green color in the Fig. 3 and Fig. 4) 

Active cooling systems were considered as a possible solution for the temperature rise of the coils but 

discarded due to the constraints imposed by the available space and complex geometry of the coils, 

though remain a possibility for future upgrades. Instead, temperature rises are limited to acceptable 

levels by increasing the number of turns, lowering the required current to maintain the same magnetic 

field strength; and increasing the cross section of the wire, thus lowering the resistance of the wire. 

Having this in mind, authors realized that most of the difficulty of the coil system relies on the 

mechanical issues and not electrical. The number of extra turns and increased coil width is constrained 

by the available space for coils. A test bed model of one of the grooves was created and coils were 

wound exploring different AWG wire calibers, insulations and configurations of the turns, in order to 

gauge the ability of various coil configurations to be successfully implemented during the building of 

SCR-1. Once an optimal configuration based on these requirements was determined, the parameters of 

this configuration were applied to all coils on the Stellarator using a CAD program to check that the 

coils did not overlap, and calculations were performed to corroborate the temperature rise of the coils 

during the pulse are within acceptable levels. The results are shown in Figs. 3 y 4, where the current 

coils configuration provides 767.8 A. 
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For positioning of the coils in the vacuum vessel a CNC machine that generated little grooves in the 

vacuum vessel was used (see Fig. 2). A specialized automated machining device has been designed to 

cut the grooves into an acrylic material coating the torus in a pattern corresponding to the coil shapes 

[6], however, it was discarded because the supplier who constructed the vacuum vessel also has 

manufactured the coil guides using 3D printer and then casting technique.  Subsequently the coil guides 

were welded to the vacuum vessel as shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before operation of the SCR-1, a magnetic field mapping system will be assembled to verify that the 

coils have been positioned correctly. This mapping system will consist of a movable thin rod 

impregnated with a substance (probably barium oxide or phosphor P15 or P24) that produces a 

fluorescent luminescence when electrons propelled by an e-gun hit with the rod. These impacts will be 

filmed by a CCD camera at approximately 1/10 – 1/30 frames per second; the number of frames per 

second chosen must be the same number of the frequency of the oscillation of the rod. Finally, the 

images will be superimposed to generate a final image of the vacuum magnetic surfaces, which will be 

compared to those calculated theoretically. This magnetic field mapping methodology was originally 

applied to UST_1 [3]. 

 

 

 

 

Figure 3. Temperature comparison between different 

coils configurations. 

 

Figure 4. Voltage-Drop vs time for the battery bank of 

the SCR-1. 
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2.4. Power Supplies systems 

The electrical supply system consist of an array of 60 lead-acid electrochemical cells (battery bank); 

each cell will have a nominal voltage of 2 V and an electrical storage capacity of 150 Ah. The battery 

bank will have a voltage of 120 V and is capable to deliver a current of at least the required 767.8 A 

during one duty cycle of the SCR-1; as mentioned previously the duty cycle of SCR-1 is mainly limited 

by the ohmic heating experienced by the coils during operation (Fig. 3). The temperature rise leads to a 

rise in the coil resistance (Fig. 4), in order to maintain constant current over the estimated 4 to 10 seconds 

of a SCR-1 pulse, the system will use a switching current controller between the battery bank and coils 

system in order to allow the voltage across the coils to rise as the coils resistance increases [7]. The 

electrical current and electrical circuit for the SCR-1 is shown in Fig 5. 

2.5. Heating Systems 

The SCR-1 plasmas will be heated by ECH 2nd harmonic at 2.45 GHz with a plasma density cut-off 

value of 7.45×1016 m-3. Two magnetrons with a maximum output power of 2 kW and 3 kW will be used, 

located in symmetrical positions. The heating system was specifically designed to meet the requirements 

of the characteristics of this small stellarator [8], with a focus on the efficiency of the energy transfer 

from the electromagnetic wave (EM) to the plasma bulk and reducing the reflection coefficient through 

impedance coupling, as well as safety and ease of measurement. Because the SCR-1 is much smaller 

than those commonly operated by other laboratories, the main engineering considerations have been: 

shot time, electron cyclotron frequency (2.45GHz) at a specific magnetic strength for the main heating 

frequency, and power consumption for the current supply affordable by the funding agency (ITCR). 

 

Figure 5. Electrical circuit for the SCR-1. 
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In terms of heating frequency, the wide selection and lower cost of components at 2.45GHz has defined 

several parameters of design such as the magnetron frequency and waveguide selection. In addition 

continuous wave (CW) magnetrons can be used and heating problems will not arise because of the short 

duration of shots (4 s to 10 s). Using the parameters discussed in previous sections, quantities such as 

skin depth, plasma density and others can be used to estimate the coupling of the plasma and heating 

power through selection of a tuner to match the impedance and avoid strong reflections, thus achieving 

maximum energy transfer and safety (see Fig. 6). 

 

2.6. Heating Systems 

The diagnostics consist of a Langmuir Probe, an iHR550 optical spectrometer and a Heterodyne 

Microwave Interferometer, specially designed for the requirements of this small scale stellarator design. 

A versatile remotely controlled reciprocating Langmuir probe presented in Fig. 7 (located in vertical 

position) has been developed for the SCR-1. The main components of the system are two removable 

heads, containing the measurement four tips each one, and a displacement system that enables the probe 

to be displaced in vacuum. Diagrams of tips and Langmuir Probe system especially designed for the 

SCR-1 is shown in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Simple block diagram of the Heating System 

of the SCR-1. 

 

Figure 7. Diagrams of: (a) Close-up of the Langmuir 

probe tip. (b) Langmuir Probe system especially 

designed for the SCR-1. 
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The probe heads that supports the Langmuir probes is easily removable. It consists of two boron nitride 

heads and an array of four tungsten tips per head. The probe will allow to investigate the local plasma 

density, temperature, plasma potential, and their fluctuations. 

The Microwave Interferometer diagnostic is located vertical. The probing beam has a frequency of 28 

GHz, corresponding to a wavelength of λ = 10.71 mm. The line-integrated electron density is deduced 

from the cumulative phase change of the probing beam and the theoretical length of the intersection of 

the probing beam with the plasma (obtained from the magnetic geometry in vacuum). It is important to 

state that the interferometer was developed along with a computer program to receive the data of the 

linear density of the plasma. Fig. 8 shows a diagram of the components of the interferometer. 

2.7. Simulations, Modeling and Magnetic field calculations 

A JAVA code named SimPIMF was developed by the creator of the UST_1, engineer Vicente Queral, 

to calculate three-dimensional (3D) magnetic fields. Later, the code evolved, and was able to 

calculate/simulate by field line tracing: Poincaré plots, rotational transform and magnetic well profile, 

plasma size, orbit simulation with drifts, particle losses, other ‘plasma’ parameters, minimum distance 

between coils, and optimization of such parameters by iterative generation of parametric 3D coils [3]. 

To obtain calculations of the SCR-1 magnetic structure and corroborate the UST_1 results, a computer 

code in MatLab was developed to estimate the 3D magnetic field, magnetic surfaces, rotational 

transform profile and magnetic well. Also particle tracking results and Poincaré maps were obtained 

using the COMSOL Multiphysics software. In Fig. 9 vacuum magnetic surfaces are presented on cero 

toroidal angle obtained on Poincaré simulations by MatLab code for SCR-1. 

The magnetic resonant field for the SCR-1 will be 0.0438 T, and a period of 2 (m = 2) with a flat 

rotational transform profile with ι = 0.3. 

The magnetic field simulation has been approached by two different methods. In the first approach, the 

magnetic field is calculated using a Biot Savart solver implemented in JAVA and MatLab codes. The 

second approach on magnetic field simulation was done through a reduced model of the 12 modular 

coils set also using one turn per coil of the SCR-1 using the Magnetic and Electric Field module of 

COMSOL Multiphysics software. Using MatLab code and COMSOL Multiphysics software were 

obtained calculations of magnetic surfaces and where ECH resonance surface is located (Fig. 11) [9].  

 

Figure 8. Diagram of the components of the 

Heterodyne Microwave Interferometer. 
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Figure 9. Magnetic surfaces at Φ = 0º. 

 

Figure 10. Contour map of magnetic field at Φ = 0º 

for I=4607 A. 

 

Figure 11. Resonant surface (2.45 GHz) for I=4607 A.  
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The magnetic field and the magnetic surfaces are important to define the best ECH heating system and 

diagnostics locations. Also, the magnetic surfaces and the rotational transform are both needed to 

evaluate the confinement of the device. 

 

2.8. Data Acquisition and Control Systems 

 

Currently, an application has been developed to generate and diagnose plasma using uniquely one click 

button. In order to make it possible it has been achieved primarily the identification and control of three 

threads associated with the plasma generation, which are:  vacuum generation in the vessel, the 

automatic gas injection and heating system. For the gas injection process, a proportional – integrative - 

derivative (PID) compensator, for automatic control theory, was design using dynamic equations and 

physics of the system. The role of this compensator is to regulate the gas flow automatically to achieve 

a reference pressure within and specified time with a smooth behavior; this could be made by sending 

commands with the new set point, calculated by the compensator at every sampling time, to the Power 

Source and Readout device for the Mass Flow Controller. 

 

2.9. Safety 

 

Its main purpose is to achieve the goals of the project in a manner that guarantees the safety of the people 

and the equipment, as well as the correct development of the operations. The level of protection must 

be established as well as a risk reduction system on the development and operation of each stage of the 

SCR-1; coordinators in this aspect have knowledge on technical aspects of the SCR-1 and human issues. 

With this purpose a safety plan was developed and protocols are defined for the operation of stellarator 

2.10. Plasma parameters 

The following are the expected plasma parameters and other characteristics. 

• Minor plasma radius: 54.11 mm.  

• Electron temperature: 13 eV. 

• Electron density: 5×1016 m-3. 

• Estimated confinement time: 5.70×10-4 ms (of ISS04 [10]) 

• Volume: 13.76 liters (0.01 m3). 

• Aspect ratio: >4.4 

The first SCR-1 plasma is expected to half of 2015. 

 

3. Conclusions 

The experience of designing and building this small Stellarator provides important opportunities for 

students, especially undergraduates, to develop the skills required for future opportunities in the field of 

experimental plasma physics and magnetic confinement fusion by working on professional research; 

engaging with the real engineering problems involved and finding their solutions; and contributing to 

the hands-on experience that is required before graduating. 

As the future first Stellarator of Latin American, it is also very significant for the Plasma Physics Group 

from Instituto Tecnológico de Costa Rica (PlasmaTEC) to work on the design and construction of SCR-

1; hoping that this can bring more plasma research opportunities to Latin American countries. 

It is also hoped that the SCR-1 inspires more universities to develop similar devices that can work well 

for didactical purposes as well as achieving its main objective: contribute to the engineering and physics 

of small Stellarators [11,12,13]. 

Any kind of help, comment or suggestion is appreciated. Please contact us if any question. 
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