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Abstract. The ablation mechanism of SiO at the laser wavelength of 266 nm has been 
investigated by characterizing the composition and dynamics of neutral and charged particles 
produced in the ablation. The neutral and ionized composition of the plume and the dynamics 
of neutral SiO were investigated by time-of-flight mass spectrometry. The velocity distribution 
of neutral SiO molecules shows contributions of slow and fast components. The velocity 
distributions of charged species in the plume were investigated by a Langmuir probe 
technique, obtaining that the distributions shift towards higher velocities with increasing 
distance from the target surface. The fastest component of the velocity distribution of neutral 
SiO overlaps the slowest part of the velocity distribution of charged species. The average 
rotational energy of SiO molecules, estimated by LIF spectroscopy does not allow to draw 
clear conclusions about the participation of silicon oxide ion clusters as the precursors of fast 
SiO molecules in the plume.

1. Introduction  
Ablation of silicon oxide is a source of small silicon oxide clusters that are considered to play an 
important role in the nucleation and growth of nano-materials, such as silicon based nano-structured 
deposits with photoluminescent properties [1 - 5]. At the laser wavelength of 308 nm, studies on the 
dynamics of the ablation plume indicate that, at low laser fluences, a thermal mechanism can account 
for the velocity distributions of neutral species in the plume that is also characterized by the presence 
of neutral and ionized Sin clusters. [5] At the ablation wavelength of 248 nm there is some evidence of 
a different mechanism; at this wavelength Sin

+ are not observed and there are some indications that the 
ion distribution is more forward peaked than at longer wavelengths [4]. At 193 nm a complex 
mechanism involving a slow varying and a highly forward directed components of the plume, can be 
inferred through analysis of the angular distribution and rates of the deposition films obtained in the 
ablation [3]. Aiming at characterizing the transition between the different mechanisms we have 
investigated the ablation process at the intermediate wavelength of 266 nm. 
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2. Experimental
Pellet samples of SiO were ablated under vacuum by the 4-th harmonic of a Nd:YAG laser, delivering
laser pulses of 6 ns,  at the wavelength of 266 nm.  The composition of charged species in the plume
was obtained by time-of-flight (TOF) mass spectrometry. The plume developed in a direction
perpendicular to the flight axis of the spectrometer and was deflected by an electric field along the 
TOF axis. The vacuum in the ablation chamber and in the flight region of the spectrometer was
respectively better than 2x10-6 and 2x10-7 mbar. Neutral species present in the plume were postionized
with an ArF excimer laser (193 nm); the laser beam, mildly focused by a 40 cm focal length lens, 
interacted the plume perpendicularly to both the direction of plume propagation and the deflecting
electric field; typical fluences of the postionizing laser were 0.08 Jcm-2.

The time distributions of neutral SiO was measured by post-ionizing the plume at different distances 
above the target surface and, for a given distance, varying the delay time between the ablating and the
probing lasers. The experimental set up has been described in detail in ref. [5].

The velocity of charged species in the plume was measured with a Langmuir probe consisting of a
tungsten wire (diameter 0.1 mm) surrounded by a ceramic pipe; the wire was bent 90o at its end 
(leaving an exposed region 5 mm in length). Ablation of the target was performed in a cylindrical
vacuum chamber, 20 cm in diameter, evacuated up to 8x10-6 mbar.  The laser beam was focused by a
quartz lens (f = 30 cm) on the rotating surface of the target under the incidence angle of 45o. The laser
fluence was 0.5 J/cm2. The Langmuir probe could be displaced along the surface normal. The probe
was biased in the range of -10 to 10 V with respect to the chamber walls.

The rotational temperature of SiO in the plume was measured by recording the rotationally resolved
laser induced fluorescence (LIF) spectrum of the SiO molecules present in the ablation plume. The 
rotational distribution of the SiO in its ground vibronic state was measured probing the transition SiO 
(A1  v´=3, J’  X1  v´´=0, J”) by scanning a frequency-doubled dye laser in steps of 0.001 nm; the 
exciting wavelength was near 221.5 nm whereas the excited fluorescence was collected in the spectral
region of 281-283 nm [6].

3. Results and discussion

3.1. Composition of the ablation plume
The composition of the charged and neutral species in the plume was measured at different ablation 
fluences (from 0.15-0.7 Jcm-2). In the whole range studied, the most intense silicon-containing ion was 
readily assigned to Si2O+. Other ion clusters of silicon and silicon oxides were observed at smaller
intensities. Impurities with low ionization potential as Na+ and K+ gave an intense signal in the mass
spectra.  The main neutral species observed were Si, SiO and Si2, recorded under similar fluence 
conditions as those for observation of ions. Neutral silicon oxide clusters were not observed. 

3.2. Velocty distributions of neutral and charged  species 
In order to compare the evolution in the plume of the charged and neutral species we have measured 
the velocity distribution of SiO and the velocity distribution for positively charged species and
electrons.  The time distributions, I(t), of neutral SiO were measured at distances from 0.5 to 2 cm
above the target surface and at laser fluences in the range of 0.15 to 0.5 Jcm-2. The time distributions 
were converted to velocity distributions, f(v),  by  the transformation: f(vz) α I(t).t2. The latter assumes
that the postionization takes place along the column in the plume interacted by ArF laser beam and
therefore the signal intensity at a given time is proportional to the density integrated along the column,
instead of integrated at a point [7].  The velocity distributions of positive ions and electrons were 
measured at distances of 1 and 2 cm above the target surface and at the same laser fluence as for the
neutral SiO; the distributions are shown in figures 1 and 2 and compared to the velocity distribution
for SiO measured at 1.5 cm.
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Figure 1: Velocity distribution of SiO
and positive ions in the plume at 
distances above the surface of 1.5 cm
for SiO and 1 and 2 cm for the ions. 
Laser fluence is 0.5 Jcm-2
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Figure 2: Velocity distribution of SiO
and electrons in the plume at distances 
above the surface of 1.5 cm for SiO 
and 1 and 2 cm for the ions. Laser 
fluence is 0.5 Jcm-2
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It can be observed that the SiO distribution is multi-component indicating that several mechanisms
contribute to the formation in the plume of neutral SiO. Regarding positive ion and electron 
distributions, the data depicted in figure 1 and 2 shows that the distribution shifts towards higher
velocities at increasing distance above the target. In this range of distances, comparison of neutral SiO 
distribution, with that of charged species shows that the fastest part of the SiO velocity distribution 
overlaps that of charged species in the range of velocities of 3000 to 6000 ms-1. This suggests that the
formation mechanism of SiO responsible for the fastest component of the velocity distribution is
related to charged species in the plume. Regarding ion species that could be precursors to SiO 
formation, we note that the most abundant silicon-containing species detected in the mass spectra is 
the Si2O+ cluster. Neutral Si2O is stable against dissociation in SiO+Si by ~ 2eV [8], but excited Si2O
formed by ion-electron recombination could have enough energy to undergo dissociation leading to
neutral SiO. Ion-electron recombination has been invoked to explain velocity distributions of neutral
and ionised Zn and O atoms produced in the ablation of ZnO and also to account for the fast velocity
component of neutral atoms produced in the ablation of YBCO at 351 nm [9, 10]. On the other hand,
the shifts towards higher velocities of the electron and positive ion distributions would be compatible
with depletion of those species due to ion-electron recombination processes. However, other 
mechanisms of plume acceleration cannot be excluded; thus, double layer effects involving significant
laser / plume interaction, has been shown to lead to plume acceleration in the Nd:YAG laser ablation
of graphite at moderate fluences and nanosecond laser pulses [11].

Aiming at a better characterization of the internal energy content of the plume species, that could 
help to elucidate if the observed species could be result from electron-ion recombination processes, in
the next subsection we report experimental data on the rotational energy content of the SiO molecule
in the plume.
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3.3. Rotational energy of SiO in the plume 
The rotational population was probed by LIF of SiO (X1  v´´=0, J”) at 1 cm above the target surface 
and at a delay of 3 μs with respect to the ablating pulse. By comparing the intensity of pairs of 
transitions: P(26), P(27) and P(28) respectively to R(36), R(37) and R(38) and assuming Boltzmann
rotational equilibrium, the rotational temperature at the ablation fluence of 0.3 Jcm-2 is estimated as
1170 K corresponding to an average rotational energy of 0.1 eV. The energy appearing as internal 
energy of SiO, if the latter were formed in the plume by an electron-ion recombination mechanism,
can be estimated assuming that the precursors are the small clusters observed in the mass spectra,
Si2O+ or  Si3O+. Taking as the ionization potential of neutral SinO a value of ~8eV and ~ 2 eV as the
dissociation energies to SiO product formation [8, 12], the excess energy of the process largely
exceeds the rotational energy measured above. We note however that the rotational temperature,
calculated assuming equilibrium, may not be appropriate to characterize the complete rotational 
distribution; beside this, in order to obtain a complete energy balance of the process it should be taken 
into account the energy appearing as vibrational excitation of SiO and that carried by other 
fragmentation products.

4. Summary and conclusions 
The ablation mechanism of SiO at the laser wavelength of 266 nm has been investigated by 
characterizing the composition and dynamics of neutral and charged particles in the ablation plume. It
is concluded that several mechanisms contribute to the velocity distribution of neutral SiO molecules
in the plume and that the mechanism responsible for the fastest velocity component is related to that of
charged particles. The participation of recombination processes electron - silicon oxide ion clusters, is 
not consistent with the estimated rotational temperature of SiO molecules. A complete characterization
of the SiO ro-vibrational distribution and of the energy disposal on other possible co-fragments of the 
dissociation is needed to elucidate the latter point.
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