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Abstract. Effect of laser ablation on properties of remaining material was investigated in 
silicon. It was established that laser cutting of wafers in air induced doping of silicon by 
carbon. The effect was found to be more distinct by the use of higher laser power or UV 
radiation. Carbon ions created bonds with silicon in the depth of silicon. Formation of the 
silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of 
the carbon diffusion was performed to clarify its depth profile in silicon. Photo-chemical 
reactions of such type changed the structure of material and could be a reason for the reduced 
quality of machining. A controlled atmosphere was applied to prevent carbonization of silicon 
during laser cutting.  

1. Introduction
Laser ablation is widely used in analytic sampling [1], deposition [2] and laser micro-fabrication [3]. 
Ablation is a key process for many laser applications. Laser cutting and scribing of silicon wafers are 
widely used in semiconductor industry. Here, numerous laser pulses are required to ablate an 
appreciable amount of material. The quality of such processing in almost all cases is typically 
evaluated by geometric shape of the excisions together with the formation or absence of mechanical 
defects such as cracks. Structural modification has been used to determine the depth of the affected 
layer [4]. However, investigations of chemical changes in elemental material such as silicon were not 
properly addressed.  

Laser radiation is typically absorbed in a thin surface layer of the material within the thickness of 
-1, where  is the absorption coefficient at the laser wavelength. Even with ultra-short pulses, a 

significant part of the laser energy is deposited into the substrate as heat [5]. Thermal conductivity is 
responsible for dissipation of the excess energy. Evaporation of material leads to ignition of plasma by 
laser beam in a few picoseconds. The temperature in laser ablation plasma reaches 103-104 K [6]. 
Being in close thermal contact with the substrate, the plasma also acts as an ablating tool. Further, the 
plasma actively reacts with the ambient air creating ions that can be adsorbed onto the surface. 
Therefore, the surface features formed in air are likely to be influenced by such ablation products as 
well as by dopants that become mobile during the high temperature laser heating cycle [7].  

Ablation of silicon with short pulse lasers was investigated in various processing regimes. The laser 
cut edges formed during the processing were analyzed. It was established that laser cutting of wafers 
in air initiated doping of the silicon by carbon. This effect was most pronounced at higher laser power 
or by using UV radiation. Carbon ions formed chemical bonds with silicon within the bulk substrate.  
Formation of silicon carbide was confirmed by surface spectroscopy. Conversely, a shielding 
atmosphere was found to prevent carbonization of silicon surface during laser ablation. 

2. Sample preparation and experimental 
Silicon wafers (p-Si {111}) with the thickness of 550 m were irradiated with lasers of various pulse 
durations of 60 ps (PL2241, Ekspla) and 130 fs (Superspitfire, Spectra Physics) using the experimental 
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set-up described in detail in [8]. The range for “gentle” ablation of silicon with a picosecond laser had 
been defined and all the experiments in this work were performed below the limit of crack formation. 
The cutting was performed by multiple passes along a cutting line. The pulse energy and pulse overlap 
as well as the number of passes were varied. For experiments in the controlled atmosphere, the 
samples were placed inside a vacuum chamber having a fused silica window. Rough vacuum was 
created by a rotary pump and the chamber was later filled with nitrogen (99.95 %).  

In order to varying the layer thickness disturbed by laser cutting, a set of samples were laser 
exposed with various pulse durations, wavelengths and power as presented in table 1. A silicon wafer 
was cleaved, but not laser treated to provide a fresh reference sample.  

Table 1. Laser exposure conditions of Si 
prepared for surface analysis.

laser
# sample λ, nm τ, ps F,

J/cm2

1 UV ps-cut in air 266 60 16
2 ps-cut in air 1064 60 42
3 ps-cut in air 1064 60 84
4 ps-cut in air 1064 60 125 
5 ps-cut in vacuum 1064 60 84
6 ps-cut in nitrogen 1064 60 84
7 fs-cut in air 800 0,13 57
8 fresh cleaved surface 
9 thermally oxidized Si 

Figure 1. SEM images of the original wall cut by the laser 
in the area of the channel formation (left) and a crater etched 
with the ion beam in the same area (right).

Chemical composition and the chemical bonding of the laser cut edge was characterized by X-ray 
photoelectron spectroscopy (XPS) (Riber, model LAS-3000). The fine structure of XPS spectral lines 
was analyzed with XPSPEAK41 software. As a reference, the -CH peak of the C 1s spectrum (284.6 
eV) was used. A focused beam of Ar-ions (7 keV) was used for secondary ion mass-spectroscopy 
(SIMS) experiments, following cleaning of surfaces, loading into the vacuum chamber and etching of 
the depth profile. The ion beam dimension for etching was 0.3 x 0.3 mm2. Only the central part (10%) 
of an etch crater was used for the mass spectroscopy analysis. Auger-electrons were excited by the 
electron beam (3 keV) with a spatial resolution of 2.5 μm. The elemental profile was measured on a 
fresh cleavage made in air and cleaned by Ar-ions in vacuum. 

3. Results
3.1. Laser processing 
Laser cutting in air generated deposits around the ablation area. For cutting in nitrogen ambient, a 
much larger quantity of deposits were made that looked like sand. In vacuum only little deposition was 
observed together with a coloration of the wafer surface. The surface was oxidized by the higher 
temperatures that result from reduced thermal dissipation in vacuum. The cutting speed of the wafer 
was the highest in vacuum, while it was about two times slower in nitrogen. UV radiation at 266 nm 
drove faster wafer penetration compared to IR radiation of nano- and femtosecond lasers applied at the 
same fluence. On the other hand, the volumetric ablation rate for the femtosecond laser with similar 
fluence was larger leading to higher cutting speed.  

The quality of ablation edges was good on the wafer entry side. However, starting from a depth of 
about 100 μm, channels were formed that penetrated through the wafer every 30-50 μm, especially 
when processing with the UV picosecond laser. Similar results were observed with femtosecond [9] 
and nanosecond lasers [10]. A close view of the cutting edge in the area of channeling (left) is shown 
in figure 1 together with a laser-formed edge in the same area (right) sectioned by ion-beam milling 
during SIMS. The edged structure created during laser ablation (channels) disappeared after ion-beam 
etching and transformed into a bubble-like structure with grains. The depth of the etched crater is 20 
μm. 
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3.2. X-ray electron spectroscopy (XPS) 
Fine structure analysis and deconvolution of the XPS spectral peaks enabled quantitative assessment 
of chemical structure changes induced by the laser irradiation. The main component of the Si 2p line 
located at 103.2 eV (figure 2) was in agreement with the position of the SiO2 peak in thermally 
oxidized silicon (sample #9). The position of the low energy peak (98 eV) was in agreement with 
neutral state of a silicon atom [11]. Between these two energies, additional components corresponding 
to intermediate ionization states of silicon were observed in all samples cut by laser in air independent 
of pulse duration and wavelength. These components are assigned to Si-C bonds (100.45 eV) and 
pseudomorphous configurations of silicon oxi-carbide Si-O-C (102.1 eV) [12]. Since a thinner oxide 
layer was formed during laser cutting at low-power, Si0 lines were seen only in these samples after 
prolonged ion milling (10 min.). UV radiation of 266 nm created a thick oxide layers even at lower 
power and could not be removed after 10 min. of etching. The relative intensity of the SiC component 
increased after etching (figure 2). This is evidence that small carbon atoms penetrated deep into the 
sample during laser processing even in the presence of ambient oxygen.  
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Figure 2. Normalized XPS spectra of Si 2p line in 
samples #2 (1), #3 (2), #4 (3) cut with the 1064 nm 
ps-laser and ion-etched for 10 min, and in reference 
sample #9 (4). Fitted spectral structures in #3 (1): 1a 
- 98 eV (Si0); 1b - 100.45 eV (Si-C); 1c – 102.1 eV 
(Si-O-C); 1d – 103.2 eV (SiO2); 1e – 104.7 eV. 

Figure 3. Normalized XPS spectra of C 1s line in 
samples #2 (1, 2) and #3 (3, 4) cut with the 1064 nm 
laser: „as-cut“(1, 3) and after ion-etching for 10 min. 
(2, 4). Positions of lines related to –CH and Si-C 
bonds are shown. 

Residual gases in the chamber together with poor heat dissipation by the reduced pressure led to 
creation of an oxide film during laser ablation in vacuum. Si-N bonds were detected in sample #6, 
laser cut in nitrogen. Although the Si-N Si 2p line at about 102 eV overlaps with the Si-C line, the 
latter was discounted because SiC ions were not observed in SIMS analysis of the same sample. 
Elemental silicon (Si0) was also clearly detected in sample #6. 

The carbon C 1s line of laser cut samples remained in the XPS spectra after ion-beam etching, 
while adsorbed hydrocarbon disappeared shortly as ion-milling cut through the thermally oxidized 
silicon surface. Similar trends are noted for the C 1s line of sample #2, as evidenced by the 
transformation of the central peak associated with -CH bond after ion etching (figure 3) into double 
peaks where the low energy peak at 282.4 eV is associated with the C-Si bond. The other C 1s peak at 
about 286.3 eV is a typical characteristic of oxidized carbon species, in particular carbonyl species of 
the types CO [13], or could also be associated with the Si–O–C bond [14].  

3.3. Secondary ion mass-spectroscopy (SIMS) 
SIMS spectra of all the samples were measured immediately after laser machining and again after ion-
beam etching for 5-10 min. Different combinations of Si, O, C content and, in some samples, of N 
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ions were detected. The ion-etching rate was 4 times slower in the area of “channel” formation as 
compared to the upper part of the channel edge. The relative intensity of the lines were changed by the 
laser processing conditions, yielding different depth profiles of atomic species. Even with femtosecond 
laser cutting, a disordered layer of 2 μm thickness was found. Ion-depth profiling showed that 
elemental carbon disappeared quicker than its combination in SiC, which was incorporated below the 
surface. The distribution of silicon sub-oxides was stipulated by the depth profile of oxygen.  

3.4. Auger electron spectroscopy (AES) 
Fresh cleavage of the wafer perpendicularly to the laser cutting line was used for AES analysis. The 
cleaved surface was cleaned by Ar-ions after placement in vacuum. Electron beam scans were made 
on the cleaved surface along tracks (#1,2,3, and 4 in inset in figure 4) offset from the laser-cut channel 
to provide the depth-profile carbon concentrations shown in figure 4. Residual contamination of 
adsorbed hydrocarbons caused the background carbon reading far from the laser processed surface. 
The accuracy of atomic concentration was ~10%. 

The carbon concentration obtained in parallel with the laser-cut surface (line #1) showed non-
monotonous behaviour of the C impurities through the depth of the silicon wafer. Areas nearest to the 
laser formed channels (lines #1,2) yielded the highest concentration of carbon. Deep lateral 
penetration of carbon was observed up to 25 μm from the laser-cut surface (lines #2,3) into the bulk of 
material. 
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Figure 4. Depth-profile distribution (left) of C 
atoms in silicon wafer sample #4 measured by AES 
on freshly cleaved surface in bisecting the laser-cut 
edge (see arrows in insert above): 1- uncleaned 
surface after incorporation into a vacuum chamber, 
near the cut; 2 – 15 μm off the edge; 3- 30 μm off 
the edge; 4- far away from the edge.

4. Discussion 
Laser cutting of silicon wafers by multiple scans with overlapping laser pulses is a cyclic process. The 
cycle includes drastic temperature variation with periods of time long enough for adsorption of 
hydrocarbons and other gases. Hydrocarbon molecules are always present in the air as pollutants and 
have good ability to be adsorbed on surfaces. An equilibrium solubility of carbon substitutionally 
dissolved in Si is 1018 cm-3 at 1300oC [7]. Solubility of interstitial carbon is less by more orders of 
magnitude. However, such hydrocarbons could not cause a high level of doping at the depth of a few 
micrometers. It is more likely that the source of doping is the reaction with CO2 gas, one main 
atmospheric component. CO2 molecules could be caught on the boiling front in the form of bubbles. 
Even at later dissolution in silicon, the CO2 molecules remained in the bulk due to their large size. 
Complexes corresponding to CO and CO2 molecules may be fast diffusing entities in silicon [7].  

The laser-interaction volume at the ablation front remains near the melting point for a long time of 
up to 1 μs [6] after every laser pulse. The effective time for high-temperature thermal diffusion 
increases by periodical laser scanning to as long as 1-2 ms for complete cutting of the wafer. During 
this time, the diffusion length of interstitial carbon near melting temperature (1685 K) is at least 4-5 
μm, the distance comparable with depth of incorporated carbon from AES characterization. 
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Laser ablation and plasma created inside the kerf heat the surrounding silicon material well above 
1193 K, the temperature of silicon carbide formation defined in thin film experiments [15]. 
Stoichiometric SiC is the only stable compound permitted by the Si-C phase diagram. Carbon atoms 
adsorbed on top of the silicon surface move very easily from the surface into sub-surface substitutional 
sites. On the contrary, the Si-N bonds undergo oxidation at high temperatures and are completely 
replaced by Si-O bonds above 1273 K [16]. Therefore, no nitrogen was detected in the samples 
prepared in the presence of oxygen. Depth profiles from the SIMS spectra show that silicon-carbon 
complexes (SiC) are located under the surface. The presence of silicon carbide type bounds on the 
laser-cut surface was also confirmed by high-resolution XPS spectra (figures 2 and 3). 

For UV laser irradiation, the high temperature plasma was able to dissociate molecules and produce 
ions that actively create bonds with silicon. Grains of silicon carbide were able to change reflective 
properties of the surface formed by the laser, leading to “channel” formation. The chemistry of the 
possible laser-induced processes requires further investigation.  

5. Conclusion
The interaction of silicon surfaces with air molecules during laser ablation together with the laser-
radiation and laser-ignited plasma processes are responsible for several thermo-chemical reactions. 
Thermal gradients are sent to drive diffusion of surface-adsorbed ions, leading to doping of silicon by 
carbon. Silicon carbide type bonds were formed below the surface and could be the reason for the 
“channeling” observed during wafer cutting. Shielding gas of nitrogen can prevent carbonization of 
the surface.
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