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Abstract. Monte Carlo simulation is performed under local density approximation for
electronic energy loss distribution by intermediate velocity protons for several examples of
polycyclic aromatic hydrocarbon (PAH) molecules as well as for some of naphthalene derivatives.
The energy loss distribution was found to peak in the range of 50-70 eV for all the molecules
except C60. Apart from this, a strong orientation effect with respect to projectile for electronic
stopping magnitude is observed for all molecules except C60 due to its icosahedral symmetry.
This work helps in estimation of the ionization and fragmentation cross sections using electronic
stopping.

1. Introduction
Intermediate velocity collision experiments where the capture and ionization cross sections have
competing contributions, highlight the complexity and importance of theoretical modeling for
these processes. For the cases like PAH molecules, it is not practical to perform experiments
on each and every member of the family to obtain such cross sections. Therefore electron
capture processes are often calculated using coulomb over the barrier model to a very good
agreement with experimental measurements. Similarly for ionization as well as fragmentation
various approaches are followed. On the other hand the complexity in theoretical calculations
is enhanced for the case of large molecules like PAHs where the potential energy surface cannot
be calculated numerically to a good accuracy. Moreover in such collision processes the energy
loss is not a discrete quantity and is governed by statistical processes [1].

The present work helps in estimating fragmentation cross section for ion-molecule collision
from mean energy loss calculations with the help of a simple local density approximation (LDA)
and Monte Carlo simulation. Using various thresholds and ionization potentials, these values can
be converted to ionization or fragmentation cross sections. LDA is a useful approach for large
systems where the statistical processes dominate. The validity of the simulation is established
for a PAH molecule namely naphthalene for which the experimental fragmentation yields agree
well with the simulated geometric cross section [2] and for nucleobases as well [3].

The molecules considered for the present investigation are PAHs and their derivatives
interacting with protons. PAHs are a family of hydrocarbons consisting hexagon or pentagon
rings of carbon (C) atoms with hydrogen (H) at periphery of the ring. The inherent stability
for PAHs and aromatic character is due to the existence of delocalized electrons because of sp2

hybridized C atoms. The studies of high energy radiation interaction with PAHs are important
in interstellar physics [4] as well as on earth [5]. PAHs, their cations and their hydrogenated
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derivatives are considered to be the possible carrier of diffuse interstellar bands [6, 7] and their
spectroscopic observations match with the unidentified infrared (UIR) band emission at 3.3, 6.2,
7.7, and 11.3 µm from different galactic sources. The interstellar heating is also attributed to the
PAHs [8]. PAHs also interact with cosmic ray radiation which consist of 99% of protons [4]. On
earth PAHs are formed due to incomplete combustion of C rich compounds like fuel, coal, crude
oil and they remain in human body on inhalation of polluted air or intake of improperly treated
food. Then upon exposure to the solar radiation PAHs become mutagenic and carcinogenic
inside human body [5, 9]. Proton therapy is a well known technique in treatment of cancer
where the knowledge of energy deposition into the biomolecules inside the body is very crucial
to avoid undesirable radiation effect during the treatment [10]. Hence the mean energy loss
calculations are helpful in biological, medical as well as physics applications. The simulations
are performed for 80 and 100 keV proton beam due to its significance in therapy known as Bragg
peak energy which causes the highest dose deposition in radiation therapy [11, 12]. So far the
application of LDA to PAHs (except fullerene and anthracene) has not been studied and the
estimation of the fragmentation cross section from electronic stopping distribution is for the first
time reported as part of this work for naphthalene. Hence this work will help in validating the
future experiments at intermediate velocity collision for any ion-molecule combination.

2. Mean electronic energy loss calculation
For intermediate velocity projectile collision, the energy deposited into the molecule due to a
light ion like proton is dominated by electronic processes. The electronic stopping power is much
larger than the nuclear one with an assumption that removal of electron is faster than the nuclear
motion. The projectile can transfer varied amount of its kinetic energy to the target depending on
the nature of interaction whether direct ionization or electron capture or transfer ionization. The
fragmentation dynamics depends upon the coulombic interaction between projectile and target,
and hence on the energy transfer into the molecule. In the energy range under consideration
here, the recoil energy of the projectile is negligible compared to the net energy deposited in the
molecule [13]. To estimate the energy transferred to the target molecule from the projectile ion
we have performed Monte Carlo simulations for random trajectories of projectile ions using the
LDA model developed by Lindhard et al. [14, 15] .

2.1. Local density approximation
The LDA is a well known approach in stopping power for solid targets [14, 15]. This model has
also been used for ion-atom [16] and ion-molecule collisions [17] and is applicable for a range from
several keV to several MeV energy per atomic mass unit (amu) where collision time is shorter
(10−16 − 10−17 s) than the vibrational or rotational time scales (10−13 s or longer) [17]. The
detailed formalism of the calculation adapted here is reported in literature [14, 17]. The LDA
approximates the target as a non uniform distribution of electron density and the energy loss
distribution due to the interaction of projectile (considered as a point charge) is thus calculated
at each volume element of the total electron density, which finally provides the mean energy
loss.

2.2. Monte Carlo simulation details
The 106 randomly generated trajectories are made to pass through a non-uniform electron
density distribution representing the target. Using LDA method, energy loss is calculated for
each volume element of the electron density and the total energy loss is calculated as the
sum of all these contributions. In the simulation, the deceleration of projectile ions along
their trajectories as well as the coulomb deflection of these ions in the field of the target
nuclei is neglected. Total electron density is considered as the input for LDA model as the
magnitude of the projectile velocity is close to that of the velocity of the inner most electron of
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the target molecule. The target electron density was obtained quantum mechanically using
the non-local hybrid Becke three-parameter Lee-Yang-Parr functional (B3LYP) basis at 6-
311G (2d, p) with Density functional theory (DFT) method using GAUSSIAN09 [18]. The
simulation has been carried out for a fixed orientation of the molecule as well as for fixed
inter-nuclear coordinates, thus making it suitable for interpretation of the experimental results.
In the Monte Carlo simulations, two methods have been used in order to generate the random
trajectories of the projectile: i) From all directions, to compare and understand the experimental
results, and ii) Plane-wise, to understand the behavior of electronic stopping according to the
elemental composition and geometry of the molecule. The first case is reported here showing the
electronic stopping distribution. The geometric cross sections (inset of figure 1) are calculated
by integrating the area under the curve (see figure 1) of the energy loss distribution (with first
ionization potential as the lower limit of area integral) and then normalizing it with the total
number of trajectories.

Figure 1. Mean energy loss calculation using Monte Carlo simulation for interaction of
randomly generated proton projectiles of [a] 100 keV with PAH targets and [b] 80 keV
with naphthalene derivative targets. Insets showing the geometrical cross section obtained
for different targets: anthracene(1), benzene(2), benzo[c]phenanthrene(3), fluoranthene(4),
fluorene(5), phenanthrene(6), pyrene(7), tetracene(8), tetrahydrochrysene(9), tetrahydropy-
rene(10), tetraphene(11), triphenylene(12), naphthalene(13), C60(14), coronene(15), Corannu-
lene(16) using Monte Carlo simulation results with proton projectile.

3. Monte Carlo simulation results for electronic stopping
Figure 1 shows the electronic stopping distribution curve for randomly generated 106 linear
trajectories of the proton projectile ions interacting with PAHs as well as naphthalene derivative
target. The peak of mean energy loss remains same for all the molecule except C60 due to the
difference in symmetry and electron density distribution. However, the probability of higher
energy loss decreases rapidly after a pronounced peak. This peak is a result of the trajectories
which pass through the molecular volume almost perpendicular to the molecular plane. This is
due to the fact that this orientation offers the largest geometrical cross section to the incoming
projectile beam. But at the same time this orientation causes much less energy loss compared
to the in plane collision and this is the reason of the peak position in the energy loss distribution
being independent of the PAH species. The peak height is decided by the total number of C
atoms in the molecule. It is also seen from simulation results (not shown here) that contour
plot of electronic stopping for perpendicular impact of proton beam with respect to the plane
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of molecule for planar PAHs demonstrates the structure very well and is in agreement with the
distribution of electron density over the molecular plane [2].

In our previously reported work [2], the geometric cross section obtained from this simulation
for proton-naphthalene system successfully reproduced the experimental fragmentation cross
section. Here the geometric cross section obtained from simulation of proton-PAHs and proton-
naphthalene derivative interaction using the first ionization potential as the threshold for
fragmentation is shown in inset of figure 1. All the PAHs (excluding benzene) show a large
(nearly 30%) variation due to size and composition. In figure 1[a], only few examples out of all
molecules is shown (see the caption of figure 1[a] for nomenclature of molecules). As can be seen
from inset of figure 1[a], anthracene and phenanthrene show almost same cross section. Similarly
tetracene, tetrahydropyrene and tetra hydrochrysene show similar cross sections. In figure 1[b]
inset, all the naphthalene and its derivatives show relatively low (about 15%) variation in the
cross sections except 1-methyl naphthalene where the additional methyl group introduces excess
electron density causing larger cross section.

4. Conclusions
The Monte Carlo simulation of intermediate velocity protons interacting with PAHs and their
derivative are performed. The electronic energy loss process is found to deposit about 50-70 eV
energy with highest probability. This is because the planar orientation of target offers largest
cross section for the interaction. The geometric cross sections were found to be dependent on
the number of carbon atoms present. Using the first ionization potential as the cut off, the
geometric cross sections can be calculated. Similarly for other processes like fragmentation also
the cross sections can be estimated using the known or measured threshold values.
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