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Abstract. The specific heat amplitude ratios for generic anisotropic as well as isotropic

Lifshitz critical behaviors for the N-vector model are computed at one-loop level using the ǫL-

expansion. In the anisotropic case, we show that the universal result obtained reduces very easily

to that from the simpler m-axial universality class result. In the isotropic case, if n is the number

of neighbors coupled via competing interactions, we demonstrate that the ratio vanishes close to

n = 4 and becomes negative for n > 4 when it is calculated exactly, which is rather odd. The

evaluation using the orthogonal approximation is shown to yield positive results for arbitrary n.

Explicit computations for the case n = 2, d = 3, N = 1 yield an exact amplitude ratio equal to

0.06, with the approximate amplitude ratio being 1.17. We discuss two physical mechanisms to

pick out one of the amplitude ratio values. We propose an experiment in homopolymer-diblock

copolymer blends in order to determine the amplitude ratio.

1. Introduction

Competition represents the balance between attractive and repulsive microscopic short range
forces in macroscopical systems. Their description is different from ordinary physical criticality
where only either attractive or repulsive interactions take place. The main distinction is the need
to including additional parameters, the number and kinds of “competing axes” which indicate
how far the attractive-repulsive couplings extend themselves along certain space directions [1, 2].
(In the language of magnetic systems n is the number of neighbors interacting via competing
forces.)

Specific heat amplitude ratio is an example of a universal critical property which has not
been investigated yet for this sort of system. (A recent study of the susceptibility amplitude
ratio of this universality class can be found in [3].) In this work we compute this amplitude
ratio for anisotropic as well as isotropic systems. In the anisotropic cases we show how general
competition universality classes reduce to those from the m-axial Lifshitz criticalities, whereas
a similar property is demonstrated for generic isotropic systems too.

Although (second character) m-axial isotropic Lisfhitz points [4] have been reported in the
literature [7, 8, 9, 10] from theoretical and experimental results in unconventional polymers,
recent results taking into account the effect of fluctuations on these systems [11, 12] make the
subject far from being completely understood. Besides, the appearance of the isotropic case
n = 6 at mean-field level has been discussed in mixtures of (AB−BC) diblock copolymers [13].
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Hence, we found convenient to propose an experiment in polymers in the attempt to compare
our results with real isotropic physical systems with competition.

2. Anisotropic Amplitude ratio

We begin with the renormalized free energy density at one-loop level at the fixed point for
the N -vector model describing the generic anisotropic Lifshitz critical behavior. This object is
written in terms of the two factor scale, namely, the renormalized temperature (t) and order
pameter (M) and is defined up to a polynomial of second order in t. Furthermore, we choose
the free energy such that it coincides with the case without competition, i.e., mn = 0 [5], for

which ǫL(= 4 +
∑L

n=2
(n−1)
n

mn − d)) ≡ ǫ = 4 − d. Defining the quantity y = u∗nM
2 (u∗n is the

dimensionless coupling constant at the fixed point useful to our purposes in what follows), the
free energy density at one-loop order can be written as
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The integral ISPn
is the one-loop contribution to the one-particle (1PI) irreducible four-point

vertex part computed at fixed external momenta and is defined by

ISP
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(K2
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Note that at this symmetry point, only the external momenta associated to the n′ subspace is
fixed at nonvanishing values, whereas all other external momentum scales are set to zero. The
specific heat above an below the critical temperature is given by

C±(t) = −
∂2F (t,M)
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−
Nνn
2αL

[
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, (3)

and above TL we should take the derivatives and set M = 0(y = 0). Below TL, we should
employ the value of M (y) at the coexistence curve, namely y = u∗nM

2 = −6t. The integral
can be computed in a closed analytical form using the orthogonal approximation [1, 2] and is

given by ISPn
(K(n)) =

K
−nǫL
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∑
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2 ). Using this result
in conjunction with the fixed point and critical exponents up to two-loop level computed using
this approximation given, respectively, by the following expressions [2]
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is sufficient to compute the ratio up to one-loop order. After performing the integrals resulting
from the derivatives of the free energy with respect to t we identify the specific heat up to
one-loop order with the expressions C±(t) = A±|t|

−αL , which yields

A+

A−

=
N

4
2αL(1 + ǫL). (5)

Notice that in the above expression the exponent is expressed up to first order in ǫL. This
formula reduces to the case m2 = m, m3 = ... = mL = 0 corresponding to the ratio of the
m-axial Lifshitz universality class [6].

3. Exact isotropic amplitude ratio

We write the free energy density for the N -vector model describing the generic isotropic Lifshitz
critical behavior using the same ingredients as before, with minor modifications. The expansion
parameter is ǫn = 4n − d (d = mn). The free energy is such that it coincides with the case
without competition, i.e., n = 1 [5], for which ǫ1 ≡ ǫ = 4 − d. The free energy density at
one-loop order reads
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Similarly as dicussed in the anisotropic case, the integral ISPn
and the condition on the specific

heat are both defined by the expressions
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Above TL the derivatives are taken and set M = 0(y = 0) afterwards, whereas below TL
we set y = u∗nM

2 = −6t. Now, the exact result ISPn
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are required to evaluate the exact ratio up to one-loop order. From the identification C±(t) =
A±|t|

−αn , one learns that
A+

A−

=
N

4
2αn(1 + 2D(n)ǫn). (9)

This formula reduces to the case n = 1 from ref.[19], since D(1) = 1/2. Nevertheless, as n
increases D(n) becomes negative for n ≥ 2. The choice ǫn > 0 leads naturally to vanishing and

even negative values for the amplitude ratio. Accordingly, perturbation theory in the framework
of the ǫn-expansion is not a systematic correction to the mean field solution in the case of this
amplitude ratio, since neither zero nor negative values are allowed in the later situation. Could
this indicate a failure of the ǫn-expansion for isotropic systems with n higher enough? Let us
compute the amplitude ratio using the generalized orthogonal approximation [1, 2] and try to
figure out possible explanations to this odd behavior.

4. Isotropic amplitude ratio in the orthogonal approximation

Now we just have to compute the one-loop integral at the symmetry point, the fixed point and
the critical exponents using the orthogonal approximation. The integral at the symmetry point

is given by ISPn
(K) = K−ǫn

ǫn
[1+ ǫn

2n ]. The fixed point and critical exponents in this approximation
can be obtained from ref.[2] but we do not bother to write them down explicitly. Substitution
of these values above and below TL as explicated before lead to the orthogonal approximation
version of the specific heat amplitude ratio, namely

A+

A−

=
N

4
2αn(1 +

ǫn
n
). (10)

This result only agrees with the exact computation for n = 1. But the result from last equation
has the virtue that it does represent an expansion around the mean field value (ǫn = 0) since
the positiveness is guaranteed at this loop order.

5. Discussion

In fig. 1 we plot simultaneously the exact amplitude ratios for fixed ǫn. Inpired by the traditional
use of the ǫ-expansion for three-dimensional systems in order to compare with experiments, we
set ǫn = 1 for the various values of the space dimension (i.e., below the critical dimension) in
the amplitude with the variation of (N,n). The asymptotes of the orthogonal approximation
amplitude curves are defined by the n→ ∞ limit. The inset indicates how different values of N
produce a slight deviation in the cancellation of the amplitude ratio as a function of n. For all
values of N 6= 0, n ≥ 4 correspond to negative values of the specific heat amplitude ratio in the
exact approach.

The amplitude ratio await for experimental appplications in generic anisotropic systems yet
to be discovered. From the experimental viewpoint, at least the traditional second character case
m2 ≡ m can be compared with theoretical predictions. Suggested theoretically in the context
of copolymer-homopolymer ternary blends [7, 8], the first mean-field isotropic experimental
realization was reported on symmetric diblock copolymer-homopolymer blends (of polyethylene
(PE) and polyethylenepropylene (PEP)) using small angle neutron scattering (SANS) for the
case (N, d, n) = (1, 3, 2) [9]. However, a subsequent study showed that the phase behavior
of symmetric PE-PEP/PE/PEP mixtures points out to the destruction of the mean-field
Lifshitz point [10]. Another polymer system consisting of deuterated polybutadiene (dPB)and
polystyrene (PS) homopolymers has also been analyzed with SANS, though its phase diagram
was constructed from the temperature and diblock copolymer concentration [11, 12]. The
PE-PEP/PE/PEP and dPB-PS/dPB/PS mixtures agree between each other with respect to
the disappearance of the Lifshitz point caused by fluctuations, except that in the latter the
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Figure 1. The amplitude ratio plotted as a function of n and N (different collors). The
horizontal lines correspond to the value n→ ∞ using the generalized orthogonal approximation
(GOA). The inset shows how the amplitude vanish and start to take negative values for different
values of N .

fluctuations were explicitly taking into account in the isotropic Lifshitz critical region and
produced nontrivial effects on the susceptibility amplitudes and associated critical exponent
[12]. The universality class (N = 1, d = 3, n = 2) in ref.[12] encountered the susceptibility
exponent γ2 = 1.55± 0.15 from the isotherm at 69.50C with concentration of diblock copolymer
ΦDB = 0.071. Surprisingly, the exact two-loop value determined from ref.[2] using ǫ2 = 5
yields γ2 = 1.50 which is quite close to the experimental value. Unfortunately, the setup of this
experiment was not able to encounter universal values for the susceptibility amplitude ratio.

In the case of the specific heat amplitude ratio we propose the following experiment: using
a scanning adiabatic calorimeter [14], determine the mean field Lifshitz temperature TL in the
case of the homopolymer-diblock copolymer blend, for instance in the dPB-PS/dPB/PS system.
Next, in the lamellar modulated phase one should measure the amplitude ratio in a certain
temperature T = TL − ∆T as well as performing the measurement of the amplitude in the
disordered phase for T = TL + ∆T and dividing the latter result by the former. The result
could be checked in principle by measuring the amplitude at T = TL−∆T within the uniformly
ordered phase with different diblock copolymer concentration followed by a similar determination
at T = TL +∆T . Inside the Lifshitz critical region, the two results should be the same. After
that, the output should be compared with our theoretical predictions in the present work by

setting d = 3(ǫ2 = 5), N = 1, n = 2:
[

A+

A−

]

exact
= 0.06, whereas

[

A+

A−

]

GOA
= 1.17, which is quite

big a difference to clearly distinguish the correct experimental result in comparison with both
theoretical predictions and rule out one of the hypotheses raised herein.

If the would be experimental result confirms the exact ratio, then we can conclude for its
smallness that this rules out isotropic Lifshitz systems for n > 3. In that case, n = 4 represents
effectively a long range system in the isotropic competitive world, since it is well known that
systems with long range order originate negative specific heat [17, 18], even though no pathology
occurs to the exponents, leading to a new criterion for stability of isotropic competing systems.
On the other hand, if the other possibility prevails, then the propagation of fluctuations must
be restricted and the orthogonal approximation is a way out to the issue of thermodynamical
instability in higher character isotropic Lifshitz critical behavior.
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[5] Brézin E, Le Guillou J C and Zinn-Justin J, 1976 Phase Transitions and Critical Phenomena vol 6, ed C

Domb and M S Green (London: Academic) p125
[6] Leite M M, 2003 Phys. Rev. B 68 052408
[7] Broseta D and Fredrickson G H, 1990 J. Chem. Phys. 93 2927
[8] Holyst R and Schick M, 1992 J. Chem. Phys. 96 7728
[9] Bates F S, Maurer W, Lodge T P, Schulz M F, Matsen M W, Almdal K and Mortensen K, 1995 Phys. Rev.

Lett. 75 4429
[10] Bates F S, Maurer W W, Lipic P M, Hillmyer M A, Almdal K, Mortensen K, Fredrickson G H and Lodge

T P, 1997 Phys. Rev. Lett. 79 849
[11] Pipich V, Schwahn D and Willner L, 2005 Phys. Rev. Lett. 94 117801
[12] Pipich V, Schwahn D and Willner L, 2005 J. Chem. Phys. 123 124904
[13] Olmsted P D and Hamley I W, 1999 Europhys. Lett. 45 83
[14] Flewelling A C, DeFonseka R J, Khaleeli N, Partee J and Jacobs D T, 1996 J. Chem. Phys. 104 8048
[15] Thirring W, 1970 Z. Phys. 235 339
[16] Ramı́rez-Hernández A, Larralde H and Leyvraz F, 2008 Phys. Rev. Lett. 100 120601
[17] Posch H A and Thirring W, 2005 Phys. Rev. Lett. 95 251101
[18] Lederhendler A and Mukamel D, 2010 Phys. Rev. Lett. 105 150602
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