The following article is Open access

Basic idea of Corbino-type single-electron transistor

and

Published under licence by IOP Publishing Ltd
, , Citation Akira Suzuki and Hisao Taira 2015 J. Phys.: Conf. Ser. 574 012119 DOI 10.1088/1742-6596/574/1/012119

1742-6596/574/1/012119

Abstract

We have formulated the transmission probability of an electron in a Corbino quantum disk by taking into account charging effect. The geometrical potential of the Corbino disk has a singularity at the centre of the disk. In order to avoid this singularity problem, we have to reformulate the Schrödinger equation in the Riemannian manifold. The Schrödinger equation describing the motion of the electron in the Corbino disk must be expressed by introducing a momentum operator reformed by the metric tensor. In order to obtain a Hermitian momentum operator, we must deform the Hilbert space by introducing a new wave function. This deformation leads to the extra potential term in the Schroodinger equation, which depends on the metric, i.e., the geometry of the disk. It should be noted that the charging energy of confining electrons in the Corbino disk should depend on the geometry of the disk. We discuss the quantum tunneling of an electron confined in the Corbino disk in order to investigate the effect of both geometrical potential and charging energy of confining electrons in the Corbino disk by using the Wentzel-Kramers-Brillouin (WKB) method. It is expected that the charging energy, which depends on the effective confining potential, plays an important role in the transmission probability. This suggests that the formulated transmission probability is applicable to the analysis of the single-electron transistor.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/574/1/012119