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Abstract. Nanomedicine is an emerging area of medical research that uses innovative
nanotechnologies to improve the delivery of therapeutic and diagnostic agents with maximum
clinical benefit. We present a versatile stochastic model that can be used to capture the basic
features of drug encapsulation of nanoparticles on tree-like synthetic polymers called dendrimers.
The geometry of a dendrimer is described mathematically as a Cayley tree. We use our
stochastic model to study the dynamics of deposition and release of monomers (simulating
the drug molecules) on Cayley trees (simulating dendrimers). We present analytical and Monte
Carlo simulation results for the particle density on Cayley trees of coordination number three
and four.

1. Introduction
Many studies in the field of nanomedicine explore the versatile properties of dendrimers and
their potential use as a novel drug delivery mechanism via drug attachment and encapsulation
[1]. Dendrimers are new synthetic polymers able to carry both targeting molecules and drug
molecules to cancerous tumors, minimizing the negative side effects of medications on healthy
cells; they are perfect physical examples of Cayley tree structures.

We propose a cooperative sequential adsorption model with evaporation (CSAE) defined on
a general Cayley tree. CSAE models are ideal for describing drug encapsulation and release
because (i) the deposition process of the drug nanoparticles is stochastic and can be modeled by
sequential adsorption models; (ii) the deposited drug nanoparticles are electrically charged, as are
the substrate deposition sites, suggesting a cooperative model with deposition rates dependent on
nearest-neighbor site occupation; (iii) the drug nanoparticles have a probability of detachment,
which is incorporated in the model via an evaporation rate.

We first map our CSAE model onto an Ising model defined on a Cayley tree of coordination
number z = 4. In section 3, we derive the rate equations for the spin magnetizations and find
numerical results for the particle densities for specific attachment and detachment probabilities.
In section 4, we compare our analytical results with Monte Carlo simulations modeling particle
deposition onto a Cayley tree. Lastly, we present a summary of our work and suggestions for
future research in section 5.
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2. Model definition and its connection to the Ising model
We model the adsorption surface as a Cayley tree with coordination number z. We consider
monomers that attach/detach from the nodes of the tree. We define an occupation number
ni = 0 for an empty site and ni = 1 for an occupied site.

We define the following transition rate for the particle occupation:

c(ni → (1− ni)) = γni + (1− ni)αβ
∑

j∈NN nj (1)

The first term in the transition rate is the evaporation term: if a particle is present, it will
evaporate with probability γ. The second term describes the deposition of monomers. If the
lattice cell is empty, a monomer will attach with a rate equal to αβη, where η =

∑
j∈NN nj is

the number of occupied nearest neighbors.
We map our model onto an Ising model defined on a Cayley tree of coordination number z.

The Hamiltonian associated with the d-dimensional Ising model of a system of N spins in an
external field is [2]:

H = −J
∑

i,j∈NN
sisj −Bext

N∑
i=1

si (2)

The first term describes the interactions between nearest-neighboring spins, and the second
term expresses the interaction between each spin and an external magnetic field Bext. The spin
numbers are si = 1 for a spin up, and si = −1 for for a spin down. In terms of the spin numbers
si, the particle occupation numbers are: ni = 1+si

2 .

The equilibrium properties of this model can be derived from the partition function (provided
that it can be solved), but the non-equilibrium properties depend on the nature of the spin
dynamics. The steady-state of our non-equilibrium system is equivalent to the corresponding
equilibrium Ising model if the detailed balance condition is satisfied [3]:

Peq(s)cj(s) = Peq(s
j)cj(s

j) (3)

The variable s stands for a configuration of the system, and sj is the same configuration with
the jth spin flipped. Peq is the Boltzmann factor.

The coupling and field constants K and h can be found from the detailed balance condition,
and are dimension dependent:

K =
J

kT
=

1

4
ln(β) (4)

h =
Bext
kT

=
1

4
ln(

α2βz

γ2
) (5)

This mapping onto the Ising model permits the use of known results [5] to analyze our stochastic
model.

3. Cayley tree theoretical analysis
Glauber presented the solution for the magnetization of a spin system in one dimension in [4].
We generalize his method for a Cayley tree. We assume translational invariance within each
generation of the Cayley tree: all spins within a specific generation are equivalent. We label the
central node of the tree as “n”, and then each subsequent generation from n to 1, with generation
1 being the outermost generation of the tree. We define the magnetization of generation i as
qi =< si >. In terms of this magnetization, the particle density of generation i is defined by:
ρ = 1+qi

2 . The time evolution of qi is derived [6] to be:
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dqi
dt

= −qi(t) +B+ < tanh(K
∑
j∈V (i)

sj) > +B < si tanh(K
∑
j∈V (i)

sj) > (6)

where B = tanh(h) reflects the effect of the external field.
This equation does not have exact solutions in higher dimensions, and in that situation, one

has to use different approximations schemes. We present results for a Cayley tree of coordination
number z = 4 with arbitrary magnetic field h.

In order to be able to get a closed form for the system of equations, we use the series
expansion approximation for tanh(K

∑
j∈V (i) sj) = C1(

∑
j∈V (i) sj) + C2(

∑
j∈V (i) sj)

3, and find

the coefficients C1 = 2
3 tanh(2K)− 1

12 tanh(4K), and C2 = 1
48 tanh(4K)− 1

24 tanh(2K).
We also use the factorization approximation, <

∏
j∈NN sj >=

∏
j∈NN qj , which allows us to

remove multi-spin correlations. With these approximations, the system of equations is:

dqn
dt

=− qn + 4(C1 + 10C2)qn−1 + 24C2q
3
n−1 +B(1 + 4(C1 + 10C2)qnqn−1 + 24C2qnq

3
n−1)

dqi
dt

=− qi + (C1 + 10C2)(3qi−1 + qi+1) + 6C2(3q
2
i−1qi+1 + q3i+1)

+B(1 + (C1 + 10C2)(3qiqi−1 + qiqi+1) + 6C2(3qiq
2
i−1qi+1 + qiq

3
i−1))

dq1
dt

=− q1 + q2 tanh(K) +B(1 + tanh(K)q1q2) (7)

This system of equations can be solved numerically, and Figs. 1 and 2 present the associated
particle densities per generation and for the entire tree for sample parameters.

Figure 1. Density vs. time for each
generation, with z = 4, α = 1, β = 0.5,
γ = 0.25. Time is in arbitrary units.

Figure 2. Density vs. time for entire tree
for z = 4. Comparison for zero (h = 0) and
nonzero (h = 1) external field. Time is in
arbitrary units.

We also matched our analytical results with Monte Carlo simulations on Cayley trees with
coordination number z = 4 (Fig. 3) for a variety of parameter regimes, both with and without
the presence of an external field. The good match between simulation results and analytical
solutions suggests that simulations can be an effective tool for studying the dynamics of larger
tree structures. A larger number of sites also decreases the impact of random variations on total
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Figure 3. Comparison of theoretical solution
(red) and the simulation average over ten
trials (green). Parameters used: z = 4, α = 1,
β = e, γ = 1. Time is in arbitrary units.

Figure 4. Comparison of simulations for 4-
generation tree (red) and 9-generation tree
(blue) on an arbitrary time scale, for z = 4,
α = 1, β = 1, γ = 1.

particle density, making simulations more effective for larger systems than they are for small
systems. We therefore investigate the time evolution of a 9-generation tree and compare it to
our results for a 4-generation tree. As seen in Fig. 4, the density plots for the two trees are
nearly identical when the arbitrary time for the larger tree is rescaled. This result suggests that
our theoretical solutions will apply equally well to trees with more generations.

4. Conclusion
In this article, we presented a model of cooperative sequential adsorption with evaporation
for particle deposition on a Cayley tree, which we mapped on an equivalent Ising model.
Theoretically, we found systems of differential equations describing the time-development of
magnetization for each generation of Cayley trees with coordination number z = 4. We related
these Ising model magnetization results to the particle density for our model. Computationally,
we simulated the CSAE process on a Cayley tree and found excellent agreement between
simulation results and theoretical predictions. This agreement validates our analytical solutions
and supports the effectiveness of the simulations in mapping the dynamics of the system. Further
studies could apply this model more directly to the drug encapsulation process or adapt it to
address other systems such as self-assembled thin films, epidemic models, or social networks.
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