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Abstract. The bulk critical specific heat capacity of a classical anharmonic crystal with long-range
interaction (decreasing at large distances r as r−d−σ , where d is the space dimensionality and 0 < σ ≤ 2)
is studied. An exact analytical expression is obtained at the upper critical dimension d = 2σ of the system.
This result depends on both the deviation from the critical point and the space dimensionality of the system,
while the known asymptotic one depends only on the deviation from the critical point. For real systems
(chains, thin layers, i.e. films and three-dimensional systems) the exact result and the asymptotic one are
graphically presented and compared on the basis of the calculated relative errors. The obtained result holds
true in a broader neighborhood of the critical point. The expansion of the critical region is estimated at the
three real physical dimensionalities.

1. The model
The considered model describes a structural phase transition of second kind. The Hamiltonian of the
model is [1]
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+
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where Pr and Qr are the operators of displacement and momentum, respectively, of the particle of mass
m at site r of a d-dimensional hypercubic lattice. The parameter A = ν20m > 0 determines the frequency
of a mode which is unstable in the harmonic approximation and the parameter B > 0 introduces an
anharmonic interaction which is inversely proportional to the particle number N . The harmonic force
constants φ(r − r’) which are assumed to decrease at large distances r = |r − r’| as r−d−σ, describe a
short-range (σ = 2) or a long-range (0 < σ < 2) interaction.

The free energy density of the model (1), obtained by using approximating Hamiltonian method
is [2, 3]

f =
A2

B
f0 =

A2

B

(
1

2
Id,σt,λ (∆̄)− 1

4
(1 + ∆̄)2

)
, (2)

where ∆̄ is the solution of the self-consistent equation

dId,σt,λ (∆)

d∆
= 1 +∆. (3)
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In the thermodynamic limit N → ∞ the function Id,σt,λ is defined by

Id,σt,λ (∆) = 2t
Sd

(2π)d

∫ xD

0
xd−1 ln

(
2 sinh

(
λ

2t

√
∆+ xσ

))
dx, (4)

where t = T/(4E0) is the dimensionless temperature and λ = ~ν0/(4E0) is a parameter which
switches on the quantum fluctuations, E0 = A2/(4B) is the barrier height of the double-well potential
in (1), xD = 2π(d/Sd)

1/d is the radius of the effective sphere replacing the Brillouin zone and
Sd = 2πd/2/Γ(d/2) (Γ is the Euler gamma function) is the surface of the d-dimensional unit sphere.
Setting ∆ = 0 into (3) one obtains the critical point tc(λ). In the disordered phase (t > tc), ∆̄ is finite
and the susceptibility of the system is χ = ∆̄−1.

Let us note that the equations (2) and (3) play a central role in the study of the bulk critical behavior
of the model, e.g. for the specific heat capacity c(T ) ≡ −T∂2f/∂T 2 from (3) and (2), we obtain

c(t) = −t
∂2f0
∂t2

= − t

2

(
∂2Id,σt,λ (∆̄)

∂t2
−
(
∂∆̄

∂t

)2

− (1 + ∆̄)
∂2∆̄

∂t2

)
. (5)

This model retains many fundamental properties of the real systems related to the presence of both
quantum and classical fluctuations, depending on the temperature T , the quantum parameter λ, the long-
range interaction exponent σ and the spatial dimensionality d. For a more complete discussion of the bulk
critical behavior and the finite-size properties of the model and its generalizations, see [3] and references
therein.

Exact solutions of the self-consistent equation (3), in terms of the Lambert W-function [4], have been
obtained in both the quantum and the classical limits at the corresponding upper critical dimensions,
d = 3σ/2 and d = 2σ, respectively [5,6]. On the basis of the solution at d = 3σ/2, an exact expressions
for the bulk free energy density near the quantum critical point T = 0 has been obtained in [7]. The
finite-size corrections to the free energy density for the pure quantum version of the model have been
studied in [8].

In this paper, using the exact solution of the self-consistent equation (3) in the classical limit (λ → 0+)
at the upper critical dimension d = 2σ [6], we establish an exact analytical expression for the specific heat
capacity of the model in terms of the Lambert W-function. For systems with real physical dimensions
(chains, thin layers, i.e. films and three-dimensional systems), the obtained exact result is graphically
presented and compared with the asymptotic one on the basis of the calculated relative error. We show
that the obtained exact result for the specific heat capacity holds true in a broader neighborhood of the
critical point. Besides, we give an estimate for the expansion of the critical region at the three real
physical dimensionalities.

2. An exact result and its leading asymptotic behavior
For classical systems (λ → 0+) the self-consistent equation (3) gets the form

dUd,σ(∆)

d∆
=

1

t
(1 + ∆), (6)

where the function U is defined by

Ud,σ(∆) =
Sd

(2π)d

∫ xD

0
xd−1 ln(∆ + xσ)dx. (7)

For the critical temperature from (6) at ∆ = 0, we obtain

tc =
d− σ

d
xσD. (8)
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In the classical limit from (4), taking into account (6), we get
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Thus, from the last equation and (5), we obtain the following expression for the specific heat capacity of
the model (1) in the classical limit

c(t) = 1− 1

2
(1 + ∆̄)

∂∆̄

∂t
. (10)

Similar result was obtained in the framework of the mean spherical model [3, p.89] which belongs to the
same universality class [9].

Since in the disordered phase (t > tc) near the critical point (t → t+c ) the solution ∆̄ of (6) decreases
when t decreases and ∆̄ = 0 in the ordered phase (t < tc), then the specific heat capacity keeps its
maximum value c(t) = 1 for all t ≤ tc and the Dulong-Petit low of the classical thermodynamics holds
for all T ≤ Tc.

At the upper classical critical dimension (d = 2σ), near the classical critical point (t → t+c ), i.e.
when ∆ << 1, the equation (6) can be written in the following form(

∆

xσD

)
ln

(
∆

xσD

)
− xσD

(
∆

xσD

)
= −ϵ, (11)

where ϵ = 1− tc/t is a measure of the deviation of the critical point. From (8), for the critical
temperature in this case, we get tc = xσD/2. The exact solution of (11) in terms of the Lambert W-
function is [6]

∆̄ = xσD exp[xσD +W−1(−ϵ e−xσ
D)], (12)

where W−1(x) is the real branch of the Lambert W-function on the interval [−1/e, 0), satisfying
W−1(x) ≤ −1, as limx→0− W−1(x) = −∞ [4]. Thus, in the neighborhood of the classical critical point
(ϵ → 0+) at the upper classical critical dimension d = 2σ, from (12) and (10), we get the following exact
expression for the specific heat capacity of the model (1)

c(ϵ) = 1 +
1

1 +W−1(−ϵ e−xσ
D)

(
1− xσD

ϵ

W−1(−ϵ e−xσ
D)

)
. (13)

The last result shows that the specific heat capacity remains finite at Tc(ϵ = 0) but in this point its graph
has a cusp. The obtained expression (13) allow us to find a critical region in which the specific heat
decreases n times. For c(ϵ) = 1/n, from (13) neglecting the second term in the brackets, we obtain that
the endpoint of this critical region is

ϵn =
(2n− 1)

n− 1
e

2n−1
1−n

+xσ
D , n > 1. (14)

From (13), using the series in the asymptotic formula of the Lambert W-function [4] and retaining the
leading term, we get the following asymptotic behavior of the specific heat capacity

cappr. ≈ 1 +
1

ln ϵ
. (15)

From the other hand, the last result can be obtained from (10) using the known asymptotic behavior [6]

∆̄appr. ≈ −xσD
ϵ

ln ϵ
. (16)
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Note that the logarithmic correction in (15) was discussed in the framework of the mean spherical model
in [3].

From (15), for the endpoint ϵn,appr. of a critical region in which the asymptotic specific heat capacity
decreases n times, we have

ϵn,appr. = e
n

1−n , n > 1.

From this and (14), we get the following relation

ϵn =
2n− 1

n− 1
ex

σ
D−1ϵn,appr. , n > 1 (17)

which shows that ϵn > ϵn,appr. for each 0 < σ ≤ 2 and gives an estimate for the expansion of the critical
region. Let us note that for all n this expansion increases with σ, i.e. with the dimensionality of the
system d.

3. Comparison between the exact result and the asymptotic one
It is easy to see from (13) and (15) that the exact result depends on both the deviation from the critical
point and the dimensionality of the system, while its leading asymptotic behavior depends only on the
deviation from the critical point. For systems with real physical dimensionalities (chains, films and three-
dimensional systems), on figure 1 we present the obtained exact and asymptotic results for the specific
heat capacity.
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Figure 1. The dependences of the specific heats c and cappr. on the deviation from the critical point ϵ.

For more detailed analysis in the table 1, we give some numerical data for the computed relative
errors |1− ∆̄appr./∆̄| and |1− cappr./c| as functions of the deviation from the critical point and the
dimensionality of the system.

Table 1. Percent relative errors [%].
d = 1(σ = 1/2) d = 2(σ = 1) d = 3(σ = 3/2)

ϵ
∣∣∣1− ∆̄appr.

∆̄

∣∣∣∣∣1− cappr.

c

∣∣ ∣∣∣1− ∆̄appr.

∆̄

∣∣∣∣∣1− cappr.

c

∣∣ ∣∣∣1− ∆̄appr.

∆̄

∣∣∣∣∣1− cappr.

c

∣∣
1× 10−7 29.8 1.2 41.3 1.6 68.2 2.4
1× 10−6 33.9 1.6 47.4 2.1 78.9 3.1
1× 10−5 39.5 2.1 55.8 2.9 93.8 4.1
1× 10−4 47.5 3.1 68.2 4.2 116.0 5.8
1× 10−3 60.4 5.0 88.4 6.7 152.8 8.9
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4. Conclusions
Using the exact solution (12) of the self-consistent equation, in the neighborhood of the classical critical
point at the upper critical dimension of the system, an exact analytical expression for the specific heat
capacity (13) is obtained.
It is shown that the exact specific heat capacity depends on both the deviation from the critical point
ϵ = 1− tc/t and the long-range interaction exponent σ, i.e. of the space dimensionality d of the system.
Its leading asymptotic behavior (15), has a logarithmic correction depending only on ϵ which is well
known in the theory of the critical phenomena.
For real systems (chains, thin layers, i.e. films and three-dimensional systems) the specific heat capacity
and its leading asymptotic behavior are graphically presented on figure 1. One can see from the graph
that the specific heat capacity increases with the space dimensionality of the system. Moreover, the
obtained result (13) holds true in a broader neighborhood of the critical point. The expressions (13) and
(15) allow us to estimate the expansion of the critical region as a function of the spatial dimensionality
of the system (17). Note that this expansion increases with dimensionality of the system d.

It is easy to see from the table 1 that at each deviation from the critical point and each dimensionality,
the relative error for the specific heat capacity is less than the relative error for the inverse susceptibility.

Finally, the exact solution of the self-consistent equation can be used in investigating of the other
critical thermodynamical properties of the system, e.g. the entropy and others.
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