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Abstract. Triangular enclosures are typical configurations of attic spaces found in residential 

as well as industrial pitched-roof buildings. Natural convection in triangular rooftops has 

received considerable attention over the years, mainly on right-angled and isosceles enclosures. 

In this paper, a finite volume CFD package is employed to study the laminar air flow and 

temperature distribution in asymmetric rooftop-shaped triangular enclosures when heated 

isothermally from the base wall, for aspect ratios (AR) 0.2 ≤ AR ≤ 1.0, and Rayleigh number 

(Ra) values 8 × 10
5
 ≤ Ra ≤ 5 × 10

7
. The effects of Rayleigh number and pitch angle on the flow 

structure and temperature distributions within the enclosure are analysed. Results indicate that, 

at low pitch angle, the heat transfer between the cold inclined and the hot base walls is very 

high, resulting in a multi-cellular flow structure. As the pitch angle increases, however, the 

number of cells reduces, and the total heat transfer rate progressively reduces, even if the 

Rayleigh number, being based on the enclosure height, rapidly increases. Physical reasons for 

the above effect are inspected. 

1.  Introduction 

The study of natural convection in rooftop enclosures is gaining importance for various environmental 

applications. In roof design, the attic space is often given paramount consideration because its thermal 

characteristics have great influence on the conditions of the space directly below it. In tropical 

climates, both humid and arid, conventional types of roof construction suffer from excessive mid-day 

overheating due to the high solar radiation incident on the surface area. Solar radiation absorption can 

actually cause the roofing sheets to become very hot in the midday sun. A low-pitched roof, common 

in the tropics, is particularly prone to trap heat in the attic, and a significant amount of the cooling load 

in residential and industrial buildings is the result of heat transfer across the ceiling from the attic [1]. 

Also, in some rural areas, agricultural produce are sometimes kept in the rooftops of residences either 
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for drying or for storage. It is, therefore, desirable to have a thorough knowledge of the flow patterns 

and heat transfer characteristics of the attic space under realistic conditions. 

Figure 1. Physical Model 
 

Natural convection heat transfer and fluid flow in enclosed spaces has been studied extensively in 

recent years especially in response to energy-related applications. The earlier numerical study was 

carried out by Gershuni et al. in 1974 [2]. In their work, they investigated specific features of fluid 

motion in an enclosure with bottom heating. Studies carried out by Poulikakos and Bejan [3] for a 

right-triangular enclosure indicate single cell fluid circulations for Rayleigh numbers (Ra) up to 10
4
, 

and for values of the aspect ratio (AR) between 0.02 and 1.0. Ridouane and Campo [4] observed that, 

for 10
2
 ≤ Ra ≤ 105

, the flow bifurcation is time-dependent. Sahar et al. [5] studied natural convection 

in tilted isosceles triangular enclosures with discrete bottom heating for 10
3
 ≤ Gr ≤ 106, 0.5 ≤ AR ≤ 

1.0, Pr = 0.7, and inclination angles from 0° to 60°. The investigation showed that the mean Nusselt 

number decreases as the heated strip enlarges, and increases along with the inclination angle. Kent [6] 

used the finite volume method to study triangular enclosures for both summer and winter conditions 

within the range 10
3
 ≤ Ra ≤ 105

 for 15° ≤ θ ≤ 75°. It was observed that, for winter conditions and at 

small pitch angles, increasing Ra resulted into a multicellular flow structure. Further review on this 

subject can be found in Kamiyo et al. [7]. 

It is worthy of note that most of the studies on triangular enclosures have been restricted to 

isosceles or right-angled shapes. Reports on scalene shape are uncommon, despite that many buildings 

in different climes are of that shape. In this paper, ANSYS FLUENT
©
, a finite volume CFD package, 

is employed to study the flow field and heat transfer in rooftop-shaped asymmetric triangular cavities 

when heated from the base wall (winter condition). As in all the investigations mentioned previously, 

this study is restricted to steady laminar flow conditions (Ra ≤ 5.25 × 10
7
). 

2.  Computational details 

A long air-filled (Pr =0.71) triangular enclosure with a triangular cross-section is considered as shown 

in Fig. 1. The enclosure extension in the direction perpendicular to the cross-section is assumed more 

than double its width so that the flow features can be assumed to be two-dimensional [8]. 

The horizontal base, depicting a ceiling being heated by the warm space below it, is assigned a 

uniform temperature TH. The pitched roof is considered to be all at the same cold temperature, TC.  

Four pitch angles, 14°, 25°, 35°, and 45°, representing an aspect ratio range 0.2 ≤ AR ≤ 1.0 were 
simulated. The enclosure aspect ratio, AR, is defined here as the ratio of the enclosure height, H, to the 

left fraction of the base, LL (as from Fig. 1). The base length and the base length ratio, LL/LR, were 

kept unchanged in all the analysis. The Rayleigh and Prandtl numbers are defined 

 



Ra 
g TH TC H 3


; Pr 
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Here, 



g  is the gravitational acceleration module, and 



 , 



, and 



 , designate the thermal 

diffusivity, the thermal expansion coefficient, and the kinematic viscosity of air, respectively. 

Leaving the base-length unchanged, results in a progressive increase in the cavity height for 

increasing the pitch angle. This, in combination with a fixed temperature difference between the hot 

and cold walls, constrains the Rayleigh number to increase steadily with the pitch angle. In the four 

cases considered, the Rayleigh number ranges between 8.06 × 10
5
 and 5.29 × 10

7
. The four geometries 

considered and the corresponding Ra-values are reported in Table 1. 

 
PITCH ANGLE (θ) 14° 25° 35° 45° 

BASE LENGTH RATIO (LL/LR) 3:1 3:1 3:1 3:1 

ASPECT RATIO (AR =H/LL) 0.2 0.5 0.7 1.0 

RAYLEIGH NUMBER (Ra) 8.06 x 10
5 

5.27 x 10
6
 1.78 x 10

7
 5.29 x 10

7
 

 

Table 1. Non-dimensional characterization of the enclosures, and Rayleigh number values 

 

The governing equations for buoyancy-driven laminar flow under steady-state conditions are 

conservation of mass, momentum and energy. Subject to the Boussinesq approximation, they are 

written 
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Here, 



x  and 



y  designate the horizontal and vertical coordinates, and 



u , 



v , 



T , 



p are the field 

variables: horizontal and vertical velocity components, temperature, and pressure. 

The validity of the Boussinesq approximation in the present context is corroborated by Gray and 

Giorgini [9], since they reported that the results would deviate of at most 3% from the corresponding 

non-Boussinesq solution. Also, in the process of validating their code, Ridouane et al. [10] re-

examined the benchmark numerical study of natural convection of air in a square enclosure carried out 

by de Vahl Davis [11]. Results obtained without enforcing the Boussinesq approximation were just 

2% different from the benchmark solution. Such a level of accuracy is generally considered to be 

acceptable for natural convection flow simulations. 

The computational domain coincides with the physical domain. The triangular shape of the domain 

makes it difficult to use a structured grid; use was therefore made of unstructured triangular meshes.  

The steady-state flow field and heat transfer predictions were carried out using the finite volume 

based ANSYS FLUENT
©
 code (version 14). The SIMPLE algorithm was employed for solving the 

pressure and velocity coupling, while the PRESTO discretization scheme was enforced for pressure. 

The QUICK scheme was adopted for space discretization of the momentum and energy equations. The 

use of the above schemes, combined with body-fitted meshes having the corners inflated with nodes 

tightly clustered, is expected to guarantee good accuracy in the prediction of the local and mean 

Nusselt numbers. About 10
4
 grid elements were used for the final simulations, after a series of grid-

32nd UIT (Italian Union of Thermo-fluid-dynamics) Heat Transfer Conference IOP Publishing
Journal of Physics: Conference Series 547 (2014) 012043 doi:10.1088/1742-6596/547/1/012043

3



 

 

 

 

 

 

independence experiments. For example, results were obtained for  6344, 9196 and 12,438 elements, 

for the 14°–pitch triangle. For the sake of exemplification, the grid for case  = 35° is shown in Fig. 2. 

Convergence criteria were fixed at 5×10
-6

 for the continuity residual, and at 10
-7

 for the residuals of the 

momentum and energy equations. 

 

 
Figure 2. Computational grid for the 35°–pitch triangle. 

 

3.  Results and discussion 

Results are given in terms of streamline and isotherm representations in Figs. 3 and 4, respectively. 

The stream-function is scaled using 



U  g TH TC H  as the reference velocity, and 



H  as the scale 

length. Isotherms are for the non-dimensional temperature 



  T TC  TH TC  and, therefore, range 

from zero to one. The x-coordinate is scaled with the base length, 



L , with the origin in correspondence 

of the triangle vertex 



0.75 x L  0.25 . 
The results in Fig. 2 show that, over the relatively high Ra-range covered by this numerical 

experiment, the flow is always characterized by the presence of multiple buoyancy-driven vortices. 

Fig. 3, correspondingly, demonstrates that the thermal field is convection-dominated even at the 

lowest Ra-value, with no evidence of thermal diffusion. In all the cases the flow-field is led by a main 

central vortex rotating clockwise with a relatively high velocity. This drives smaller counter-rotating 

cells, whose number and strength changes drastically as the pitch angle increases. Up to ten vortices, 

whose size progressively reduces towards the lower corners, can be observed in the shallow 14°-pitch 

cavity (Fig. 2.a). These reduce to two large cells and three smaller vortices for the 25°-pitch enclosure. 

The vortex structure remains similar for the 35°-pitch enclosure, where, however, a single vortex 

resists at the left lower corner, while two rolls appear at the upper corner. In the 45°-pitch enclosure 

(Fig. 2.d), the two large counter-rotating cells observed in (Fig. 2.c) merge to form a larger vortex 

occupying the lower part of the space, while smaller cells are formed towards the top and bottom-left 

corners. It is observed that the multi-cellular flow structure is now vertical, as opposite to the one 

observed for the lowest pitch-value. In each enclosure, the velocity of rotation decreases as the cell 

size reduces. 

This result is similar to that of Holtzman et al. [12] who presented flow visualization results from 

experiments performed in a smoke-filled isosceles triangular enclosure heated from the base wall, to 

show that, as Ra increases for a given geometry, the flow pattern becomes multi-cellular and the 

number of counter-rotating cells increases. 
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Figure 3. Streamlines – colors indicate the strength of the circulations (clockwise from blue to 

yellow – Counterclockwise from orange to red) – a.  = 14°; b.  = 25°; c.  = 35°; d.  = 45°. 
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Figure 3. Isotherms 



  T TC  TH TC  – a.  = 14°; b.  = 25°; c.  = 35°; d.  = 45°. 

 

The strength and number of the vortices definitely controls the transport processes within the 

enclosures, as confirmed by the thermal fields in Fig. 3. Isotherms indicate the presence of hot thermal 

plumes rising from the base side and of cold jets leaving the cold upper sides. These correspond to 

regions included between two counter-rotating rolls, where the convective transport attains its 

maximum efficiency. As a consequence, the number of thermals progressively reduces for increasing 

the pitch angle. The multi-cellular flow within the 14°-pitch enclosure, Fig. 3.a, results in a thorough 

mixing of the fluid, to which corresponds a relatively high value of the mean temperature of air. In 

addition, high temperature gradients are observed at the periphery of the cells and along the walls. The 

temperature distribution within the enclosure becomes progressively more uniform as the aspect ratio 

and the Rayleigh number increase. This effect is directly related to the formation of big vortices whose 

central part remains practically isothermal and at temperatures of order 0.3-0.4.  

The local values of the heat transfer coefficient, 



hx , are reported in Fig. 4, in terms of the local 

Nusselt number 

 



Nux,L 
hxL

  
 

where 



  is the thermal conductivity of air. In the Nusselt number definition, the base length, 



L , was 

preferred to the cavity height, 



H , to facilitate the direct comparison of results relevant to different 

geometries, but having a common base-length. In Fig. 4, data for the hot and cold walls are both 

referred to the 



x-coordinate. 
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Figure 4. Local Nusselt number distributions along the bottom (red), and top (blue)  

enclosure walls. 

 

The Nusselt number distributions along the bottom and top surfaces confirm that the heat transfer 

rate is directly linked to the attachment and detachment processes of the thermal plumes at the solid 

walls. In particular, as expected, maxima and minima in 



Nux,L  closely correspond to thermal-jet impact 

points, and to detachment saddle points, respectively. This is particularly well evident for the 14°-pitch 

in Fig. 4, showing a quite well ordered oscillatory sequence. This is no longer the case for the highest 

pitch-angle values, 35° and 45°, where the trends become irregular and a limited number of relatively 

high peak-value is observed. A minimum in 



Nux,L  is always found at the upper corner, since air 

stagnates in its correspondence. The heat transfer rate drops to zero, or quasi-zero, at the detachment 

points, where air at the wall temperature is driven on the separation area by two counter-rotating 

vortices, thus creating a region of almost-zero temperature gradient over it. In most of the cases high 

Nu-values are found in the vicinity of the bottom corners, mainly due to the closeness of the hot and 

cold walls. These extreme values are however of little practical significance in terms of the overall 

heat transfer efficiency of the system. This is well documented by the values of the mean Nusselt 

number over the bottom wall in Fig.5. Results are presented for two alternative Nusselt number 

definitions, assuming the base length, 



L , and the cavity height, 



H , as the reference length, 

respectively 

 



Nuav,L 
havL


; Nuav,H 

havH
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Here, 



hav is the mean value of 



hx  over 



L . While it is obvious that the two definitions are 

equivalent, they have different informative contents in terms of interpretation of the heat transfer 

results. 

 
Figure 5. Averaged Nusselt-number values for the bottom enclosure wall. 

 

The increasing trend of 



Nuav,H  with 



  actually corresponds to expectations, since Ra changes of two 

orders of magnitude passing from the 14° to the 45°-pitch angle cases. The 



Nuav,H   plot is quasi-

linear, and this results in an almost linear dependence of 



Nuav,H  on 



Ra
1

3 . However, the increasing trend 

of 



Nuav,H  with the Rayleigh number might lead to the wrong conclusion that the system’s heat transfer 

efficiency increases for increasing 



 . That this is actually not the case is clearly shown by the 

decreasing trend of 



Nuav,L . This parameter directly reflects the total heat transfer rate, and, for cases of 

equal base-length, indicates that the thermal power driven to the cold walls undergoes a 23% reduction 

passing from the 14°- to the 25°-pitch case, reducing further for increasing 



 . 

The practical significance of the above results is that the reduction of the number of the buoyancy-

driven rolls and their progressive vertical alignment for increasing the pitch-angle provide a 

corresponding reduction of the heat transfer rate, in spite of the increase in the buoyancy forces 

indicated by the Rayleigh number. 

4.  Conclusion 

Two-dimensional, steady, laminar natural convection of air contained in a long, horizontal asymmetric 

triangular enclosure was investigated for bottom heating conditions, while varying the pitch-angle and 

keeping unchanged the enclosure base-length and the upper vertex coordinate. The results show that, 

over the range covered by the numerical experiment, heat is transferred from the hot base wall to the 

cold inclined walls by a multi-cellular flow structure. As the pitch angle increases, the number of cells 

is seen to reduce, and the cells tend to pass from a horizontal alignment to a vertical one. Since the 

Rayleigh number increases with the third power of the enclosure height, it would be expected that the 

higher the pitch angle is the higher is the heat transfer rate. Results however demonstrate that the 

effect of the pitch angle is just the opposite, since, in fact, the above-mentioned reorganization of the 
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buoyancy-driven circulations invariably produces a reduction in the heat transfer coefficients for 

increasing 



 . The work therefore provides qualitative directions for the choice of a roof shape, in view 

of the control of heat losses through triangular attic spaces. 
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In memory of  

 

Prof. Michael Wesley Collins 

 

 
 

This short commemoration is dedicated to Prof. Michael W. Collins, as an outstanding researcher 

in thermal sciences, a passionate promoter of education in sciences, and a very good friend of Italy and 

UIT (Italian Union of Thermo-Fluid Dynamics).  

Michael left us on 2014 August 23
rd

, after a short, but relentless disease. He had been born in 

Dorchester, Dorset, UK, in 1939. He got the BA in Engineering Science at the University of Oxford, 

and run most of his academic career at City University, in London, where he served as Lecturer, 

Senior Lecturer, and Professor, up to his retirement in 1998. At City University he first got the Ph.D. 

in Mechanical Engineering, and the title of Doctor of Science in 1990. 

Besides, Michael Collins was Visiting Professor at Fudan University, Shanghai & Shanghai 

University of Science & Technology, at London South Bank University, and at Brunel University, 

West London, from 2005.  

He was appointed Honorary Fellow of UIT in 1991 and Copernicus Visiting Scientist at the 

University of Ferrara, Italy, in 2006. He was awarded the Knights Cross, Order of Merit for services to 

Polish Science, in 1991, and the Busk Prize of the Royal Aeronautical Society in 1992. 

The above public recognitions of the scientific value of Michael Collins are the results of his 

untiring research activity, resulting in an incredible number of scientific contributions, around 400, 

including papers in archival journals, conference keynotes and papers, contributions to volumes. 

Heat transfer by convection was his first, and never abandoned, field of interest, even if his open 

minded view of science led him soon to extend his studies to other bordering topics, such as 

computational thermofluids, applied mathematics (Michel was Chartered Mathematician as well as 

Chartered Engineer), medical flows, non-invasive measurement methods and data processing, joint 

engineering & biological studies. 

Michael Collins collaboration with the Italian heat transfer community dates back to 1983, when he 

was appointed Contract Professor at University of Bologna, and did never interrupt up to his death. 

We remember him as a member of the Scientific Committee and as an invited speaker in several UIT 

Conferences, as well as the supervisor of a number of Italian Ph.D. students. Under this latter aspect, 

the role of Michael Collins in indicating novel and frontier research topics to our scientific community 

deserves special mention. 
 

Giovanni Sebastiano Barozzi and Walter Grassi 
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