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Viale Risorgimento 2, I-40136 Bologna, Italy.

E-mail: leonardo.alves@mec.uff.br

Abstract. The present paper investigates the transition from convective to absolute instability
induced by viscous dissipation. As far as the authors are aware, this is the first time such a
study is reported in the literature. Its framework is provided by the Poiseuille-Darcy-Bénard
convection of a Newtonian fluid. We found the same behaviour observed in the absence of viscous
dissipation whenever the Gebhart number is smaller than Ge < 0.95, which is the stabilising
effect of the cross flow. When 0.95 < Ge < 4.31, weak cross flows still stabilise the onset of
absolute instability but stronger cross flows destabilise it. For a stronger viscous dissipation,
i.e. Ge > 4.31, the cross flow always destabilises this onset. The latter two conditions create a
scenario where viscous dissipation is capable of inducing a transition to absolute instability in
the absence of wall heating, i.e. with a zero Rayleigh number.

1. Introduction
Buoyancy induced natural convection is an important phenomenon that has been widely studied
over the past century. In the present paper, we focus on a special subset of this problem that
takes place in a fluid-saturated porous medium. It has important applications in geophysical
and engineering research and technology, including aquifers in permeable rocks, underground
pollutant dispersion, solar energy collectors, and so on. A detailed discussion of many possible
applications and their respective literature review can be found elsewhere [1, 2]. The onset of
convection through buoyancy was first postulated more than a hundred years ago [3], although it
was later found that natural convection in this particular study was induced by surface tension
gradients at the interface between liquid and air [4, 5]. Applications for this phenomenon abound
in the areas of film cooling, crystal growth, electronic equipment cooling in microgravity, and so
on. More information about this interface tension gradient induced natural convection can also
be found elsewhere [6, 7].

This classical driver for natural convection known as buoyancy works as follows: Adverse
density gradients force gravity to push higher density fluid downwards against lower density
fluid, which moves upwards due to mass conservation. Density gradients can be imposed by
one of several traditional mechanisms, such as internal heating as well as solid boundaries with
differentially prescribed temperatures and/or concentrations, including any variations where
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their gradients are prescribed instead. Viscous dissipation has also been considered a possible
mechanism for the generation of density gradients. Its influence on the heat transfer and fluid
dynamics of the flow within a saturated a porous medium has been investigated for the first time
over twenty years ago [8]. However, it took many years for this topic to be further considered by
other researchers [9, 10]. It was only recently that viscous dissipation has been found responsible
for mixed convection in porous media flows [11, 12]. In the presence of a strong enough through
flow, viscous dissipation generates a nonuniform temperature distribution in an incompressible
fluid, which, in turn, creates the necessary density gradients for buoyancy to initiate mixed
convection. Several linear stability analyzes, such as the ones performed in these two former
studies, have been performed since then to uncover similar onsets of mixed convection. They
include porous media with lateral confinement [13], Darcy-Hadley flows [14] as well as Darcy-
Bénard convection with through flow of viscoelastic fluids [15]. Similar studies have also been
performed for viscous dissipation induced thermal instabilities in the Couette [16] and Poiseuille
[17] flows of clear fluids.

One important drawback of the aforementioned studies is their use of a temporal stability
analysis alone, which is only able to predict the onset of convective instabilities. Today it is
well known that the onset of mixed convection might appear as an absolute instability instead
of a convective one in the presence of through flow [18]. The onset of convective instability
is determined with a temporal stability analysis, yielding the critical point beyond which a
disturbance will grow in time in a reference frame that travels with the base flow. When
observed from a laboratory (stationary) reference frame, it manifests as spatial growth. If the
control parameter is increased beyond its first critical value, disturbances might become strong
enough to overcome the base flow and travel upstream. This second critical point represents
the onset of absolute instability, manifesting through the appearance of a pinching point in
a spatial stability analysis, which is a saddle point formed between upstream and downstream
travelling modes in the complex wave number map. The need to distinguish between spatial and
temporal disturbance growth to identify the convective or absolute nature of the instability was
first proposed in the context of plasma instabilities [19]. This is accomplished by analyzing the
evolution and asymptotic behavior of wave packets initially subjected to an impulse excitation,
which was originally done for boundary-layers [20]. A complete methodology for this analysis
was soon developed for local and parallel shear flows subject to two-dimensional [21] as well
as three-dimensional [22] instabilities. However, the latter is a quite nontrivial task when the
dispersion relation does not have an algebraic form and there is no well established approach in
the literature to deal with the numerical difficulties that arise when this is not the case [23].

The present paper is an extension of earlier work on the onset of convective instabilities
in mixed convection within a fluid-saturated porous medium [11, 15]. On the one hand,
the former study considered viscous dissipation as the only source of base flow temperature
gradients. Furthermore, they derived an algebraic dispersion relation, but considered transverse
and longitudinal rolls as separate two-dimensional disturbances. On the other hand, the latter
study considered both viscous dissipation and differentially heated boundaries simultaneously as
sources of base flow temperature gradients. In addition, it considered an Oldroyd-B fluid model,
although a Newtonian fluid was analyzed as a limiting case. However, it derived a differential
dispersion relation for three-dimensional disturbances, but solved this equation numerically. In
the present paper, an algebraic dispersion relation is derived for the Newtonian fluid limiting
case and used to determine its onset of absolute instability.

2. Mathematical Model
Two horizontal plane walls at z∗ = 0 and h∗ confine the fluid-saturated porous medium. They
allow slip, are impermeable and maintained at uniform but different temperatures. In this
configuration, x∗ and y∗ are the stream wise and span wise coordinates in the î and ĵ directions,
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respectively. According to an incompressible flow model subject to the Oberbeck-Boussinesq
approximation, it is possible to write conservation of mass as

∇ · u∗ = 0 , (1)

conservation of momentum through the Darcy’s law as

µ∗

κ∗
u∗ = F∗ , (2)

and conservation of energy as

σ∗
∂T ∗

∂t∗
+ u∗ · ∇T ∗ = κ∗∇2T ∗ +

F∗ · u∗

ρ∗h c
∗ , (3)

where the drag force driving the flow is defined as

−F∗ = ∇P∗ + ρ∗h g
∗ β∗ (T ∗ − T ∗h ) , (4)

and the term F∗·u∗ is the thermal power per unit volume generated by viscous dissipation. In the
above equations, u∗ is the velocity vector, µ∗ is the dynamic viscosity, κ∗ is the permeability, t∗

is the time coordinate, T ∗ is the temperature, ρ∗h is the fluid density at the reference temperature
T ∗h , c∗ is the specific heat of the fluid, σ∗ is the volumetric heat capacity of the saturated porous
medium divided by ρ∗h c

∗, κ∗ is the effective thermal difusivity, P∗ is the gauge pressure with

respect to the hydrostatic pressure, g∗ = −g∗ k̂ is the gravity acceleration vector, where g∗ is
the gravity acceleration and k̂ is the unit vector associated with the z∗ coordinate and β∗ is the
fluid thermal expansion coefficient.

This flow is also subject to the following boundary conditions

z∗ = 0 → w∗ = 0 and T ∗ = T ∗0 , (5)

z∗ = h∗ → w∗ = 0 and T ∗ = T ∗h , (6)

where (u∗, v∗, w∗) are the three velocity components associated with the (x∗, y∗, z∗) coordinates

in the (̂i, ĵ, k̂) unit vector directions of u∗, respectively, u∗0 is a uniform stream wise velocity, T ∗0
is the prescribed lower wall temperature and T ∗h the prescribed upper wall temperature.

2.1. Dimensionless Model
Equations (1) to (6) can be written in dimensionless form using

u =
u∗

κ∗/h∗
, F =

F∗

(κ∗ µ∗)/(h∗ κ∗)
, x =

x∗

h∗
,

t =
t∗

σ∗ (h∗)2/κ∗
, P =

P∗

µ∗ κ∗/κ∗
and T =

T ∗ − T ∗h
T ∗0 − T ∗h

, (7)

as the scaling, leading to the following dimensionless parameters

Ra =
ρ∗h g

∗ β∗ (T ∗0 − T ∗h )κ∗ h∗

µ∗ κ∗
, Ge =

g∗ β∗ h∗

c∗
and Pe =

u∗0 h
∗

κ∗
, (8)

which define the Rayleigh, Gebhart and Péclet numbers, respectively. They become

∇ · u = 0 , (9)
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for mass conservation,

u = F = RaT k̂−∇P , (10)

for Darcy’s law and

∂T

∂t
+ u · ∇T = ∇2T +

Ge

Ra
F · u , (11)

for energy conservation, subject to dimensionless boundary conditions

z = 0 → w = 0 and T = 1 , (12)

z = 1 → w = 0 and T = 0 . (13)

2.2. Base Flow
A known steady-state of Eqs. (9) to (13) is given by

ub = Fb = Pe î , Tb(z) = 1− z +
GePe2

2Ra
(1− z) z and

Pb(x, z) = P0 − Pex+
Ra

2
(2− z) z +

GePe2

12
(3− 2 z) z2 , (14)

where P0 is a reference pressure and the subscript b means base flow, since Eq. (14) is the
stationary and parallel solution whose linear stability is being investigated in the present paper.

3. Algebraic Dispersion Relation

3.1. Linear Disturbances
In order to do so, small disturbances are superposed to base flow (14) using

u(x, y, z, t) = ub(z) + εud(x, y, z, t) ,

T (x, y, z, t) = Tb(z) + ε Td(x, y, z, t) and

P(x, y, z, t) = Pb(x, z) + εPd(x, y, z, t) , (15)

where ud = (ud , vd , wd), ε is the disturbance amplitude parameter and the subscript d means
disturbance. Substituting relations (15) into Eqs. (9) to (11) leads to new systems of equations
at different orders in ε. The base flow equations that lead to solutions (14) are recovered at
order zero, i.e. by collecting all terms of O(ε0), whereas the linear disturbance equations

∇ · ud = 0 , (16)

ud = Fd = RaTd k̂−∇Pd , (17)

∂Td
∂t

+ ub · ∇Td + ud · ∇Tb = ∇2Td +
Ge

Ra
(Fb · ud + Fd · ub ) , (18)

for conservation of mass, momentum and energy, respectively, are found at order one, i.e. by
collecting all terms of O(ε1). The same can be done to boundary conditions (12) and (13), which
leads to

z = 0 → wd = Td = 0 and (19)

z = 1 → wd = Td = 0 , (20)

for the linear disturbances.
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3.2. Normal Modes
Disturbances are now assumed to have a wave like behavior in the homogeneous directions,
which allows them to be decomposed as Fourier modes in the form of

ud(x, y, z, t) = û(z) exp[ i (αx+ β y − ω t) ] ,

Td(x, y, z, t) = T̂ (z) exp[ i (αx+ β y − ω t) ] and

Pd(x, y, z, t) = P̂(z) exp[ i (αx+ β y − ω t) ] , (21)

where the hat symbol ˆ indicates a normal mode amplitude varying in the non-homogeneous
direction and i =

√
−1. Substituting relations (21) into Eqs. (16) to (18) leads to

i α û(z) + i β v̂(z) + ŵ ′(z) = 0 , (22)

from linear disturbance mass conservation Eq. (16),

i α P̂(z) + û(z) = 0 , (23)

i β P̂(z) + v̂(z) = 0 and (24)

P̂ ′(z) + ŵ(z) = Ra T̂ (z) , (25)

from linear disturbance momentum conservation Eq. (17) and

i (Peα− ω) T̂ (z) + T ′b (z) ŵ(z) = T̂ ′′(z)− (α2 + β2) T̂ (z) + 2
GePe

Ra
û(z) , (26)

from linear disturbance energy conservation Eq. (18). Equations (22) to (26) can be combined
to generate a single fourth-order ordinary differential equation for the linear disturbance cross
stream velocity component, given by

ŵ ′′′′(z)− i
(
Peα− 2 i

(
α2 + β2

)
− ω

)
ŵ ′′(z)− 2 i αGePe ŵ ′(z) +(

α2 + β2
) (
i Peα+

(
α2 + β2

)
− i ω +RaT ′b (z)

)
ŵ(z) = 0 , (27)

which is subject to boundary conditions

z = 0 → ŵ = ŵ ′′ = 0 and (28)

z = 1 → ŵ = ŵ ′′ = 0 , (29)

where the impermeable wall boundary conditions are complemented by the additional zero
second derivative boundary conditions, derived from the isothermal wall boundary conditions
through relation

T̂ (z) =

(
α2 + β2

)
ŵ(z)− ŵ ′′(z)

Ra (α2 + β2 )
, (30)

obtained by combining Eqs. (22) to (25). Equations (27) to (29) are collectively known as the
dispersion relation. They must be solved to identify the eigenvalues, given by α, β and ω, that
characterize the present problem as functions of the governing parameters Pe, Ge and Ra.
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3.3. Generalized Integral Transform Technique
The search for an absolute instability onset has a large computational time cost when it relies
solely on a graphical verification of the pinching condition. However, this cost can be greatly
reduced when the zero group velocity conditions can be employed beforehand to find possible
saddle points. Since these conditions are necessary but not sufficient, the pinching condition still
must be verified graphically. Nevertheless, it is significantly less costly to do so if the possible
saddle point location is already known. Arguably the major difficulty restricting the use of this
alternative approach is the differential form of the dispersion relation. Hence, the next step
in the present procedure is to reduce Eqs. (27) to (29) to an algebraic form. This is achieved
here through the Generalized Integral Transform Technique [24, 25], which is an extension of
Separation of Variables and the Classical Integral Transform Technique [26].

In order to generate this algebraic dispersion relation, an eigensystem must be defined for the
integral transformation procedure. An adequate system for the present problem can be obtained
from homogeneous equation

ψ′′′′m (z) = λ4m ψm(z) with m = 1 , 2 , 3 , . . . , NZ , (31)

subject to homogeneous boundary conditions

z = 0 → ψm = ψ ′′m = 0 and (32)

z = 1 → ψm = ψ ′′m = 0 , (33)

leading to normalized eigenfunctions

ψ̃m(z) = −sinh[λm ] sin[λm z ]√
Nm

, (34)

where their respective eigenvalues are defined as

λm = mπ , (35)

and norm is defined as

Nm =
cos[ 2λm ] + cosh[ 2λm ]

4
− 1

2
. (36)

Having established the eigensystem to be used for the integral transformation procedure, it
is now possible to define the inverse/transform pair

ŵ(z) =

NZ∑
m=1

w̃m ψ̃m(z) and (37)

w̃m =

∫ 1

0
ψ̃m(z) ŵ(z) dz , (38)

where the integral transformed cross stream velocity component defined in Eq. (37) forms the
new algebraic variable set with NZ terms. Since eigensystem (31) to (36) belongs to the Sturm-
Liuville class, the summation in Eq. (38) is convergent. Hence, NZ can be chosen high enough
to yield a solution for the eigenvalues α, β and ω with the desired user prescribed accuracy.
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Substituting base flow (14) into disturbance Eq. (27), multiplying the result by normalized
eigenfunction (34) and integrating it over the dimensionless domain leads to∫ 1

0
ψ̃m(z) ŵ ′′′′(z) dz − i

(
Peα− 2 i

(
α2 + β2

)
− ω

) ∫ 1

0
ψ̃m(z) ŵ ′′(z) dz −

2 i αGePe

∫ 1

0
ψ̃m(z) ŵ ′(z) dz −

(
α2 + β2

)
GePe2

∫ 1

0
z ψ̃m(z) ŵ(z) dz + (39)

1

2

(
α2 + β2

) (
GePe2 + 2 i

(
Peα− ω − i

(
α2 + β2 −Ra

)))∫ 1

0
ψ̃m(z) ŵ(z) dz = 0 ,

where the first integral can be split by parts to yield∫ 1

0
ψ̃m(z) ŵ ′′′′(z) dz =

∫ 1

0
ψ̃ ′′′′m (z) ŵ(z) dz = λ4m

∫ 1

0
ψ̃m(z) ŵ(z) dz = λ4m w̃m (40)

upon substitution of Eqs. (31) and (38). Using this result as well as inverse and transform
definitions given by Eqs. (37) and (38), respectively, Eq. (39) can be re-written as

NZ∑
n=1

Am,n w̃n = 0 , (41)

with integral transform coefficient matrix being defined as

Am,n =

(
λ4m +

1

2

(
α2 + β2

)(
GePe2 + 2 i

(
Peα− ω − i

(
α2 + β2 −Ra

))))
A(0)

m,n (42)

−
(
α2 + β2

)
GePe2A(1)

m,n − 2 i αGePeA(2)
m,n − i

(
Peα− 2 i

(
α2 + β2

)
− ω

)
A(3)

m,n

which is itself dependent on eigenfunction integral coefficients

A(0)
m,n =

∫ 1

0
ψ̃m(z) ψ̃n(z) dz = δm,n , (43)

A(1)
m,n =

∫ 1

0
z ψ̃m(z) ψ̃n(z) dz , (44)

A(2)
m,n =

∫ 1

0
ψ̃m(z) ψ̃ ′n(z) dz and (45)

A(3)
m,n =

∫ 1

0
ψ̃m(z) ψ̃ ′′n (z) dz , (46)

where δm,n is the Kronecker delta and the remaining coefficients yield analytical expressions.
Equation (41) will only have a nontrivial solution when

det[Am,n ] = 0 , (47)

for a fixed value of NZ , which is the final form of the algebraic dispersion relation. A possible
onset of absolute instability is then identified using the zero group velocity conditions

∂ det[Am,n ]

∂α
= 0 with

∂ω

∂α
= 0 and

∂ det[Am,n ]

∂β
= 0 with

∂ω

∂β
= 0 , (48)

as additional equations in the system of three equations for the three unknowns αA, βA and
ωA, which identify a possible saddle point location. Its behavior is then analyzed graphically to
verify if it satisfies the pinching condition, confirming it as an onset of absolute instability.
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4. Results and Discussion

4.1. Single Term Approximation
It is useful to first investigate an approximate solution of Eqs. (47) and (48) when the symmetric
matrix (42) is generated with NZ = 1 term only. In this case, Eq. (47) yields

π4 + π2(i Peα+ 2 (α2 + β2)− i ω) + (α2 + β2)(i Peα+ α2 + β2 − i ω −Ra) = 0 , (49)

while the zero group velocity conditions in Eq. (48) yield

i Pe (π2 + 3α2 + β2 ) + 2α ( 2π2 + 2 (α2 + β2 )− i ω −Ra ) = 0 and (50)

β ( 2π2 + i Peα+ 2 (α2 + β2 )− i ω −Ra ) = 0 , (51)

respectively. Two important conclusions can be drawn from these simplified relations. The first
one is their Gebhart number independence of Eq. (49) and, hence, Eqs. (50) and (51) as well, i.e.
the transition to absolute instability does not vary with Gebhart when NZ = 1. Since the above
relations are expected to be increasingly more accurate as the Gebhart number decreases, such
a conclusion is not entirely unexpected as it is true as well for the onset of convective instability.
The second conclusion is the existence of an onset of absolute instability for transverse modes,
which arises from the fact that β = 0 is an obvious solution of Eq. (51). In fact, we were not
able to find an onset of absolute instability for either oblique modes or longitudinal modes,
independent of the value of NZ utilize.

4.2. Convergence Analysis
A convergence study for the onset of absolute instability has been performed and shown in Fig. 1,
which presents the critical Rayleigh number relative error as a function of the Péclet number
with Ge = 5. This particular case was selected because it was the highest Gebhart number
studied and convergence worsens when this parameter is increased. Furthermore, the error for
each solution generated with NZ terms was estimated using the solution generated with NZ + 1
terms. It is clear in this figure that graphically converged curves can be obtained using NZ = 5
terms in the summation series, since maximum relative errors are smaller than 1%. Hence, all
results presented next were obtained with this number of terms. Furthermore, only transverse
modes are shown in the present paper for the reason discussed in the previous subsection.

0 2 4 6 8 10 12
Pe10

-8

10
-6

10
-4

0.01

1

100

DRa�Ra

NZ

1

2

3

4

5

Figure 1. Relative error of the critical Rayleigh number for the onset of absolute instability
with Ge = 5 as a function of Pe for different NZ .
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4.3. Numerical Solution
Figures 2 shows both onsets of convective and absolute instability, through the critical Rayleigh
number and frequency, for transverse modes as functions of the Pe with Ge = 0.01, 0.1, 1, 2
and 5. When Ge = 0.01, both onsets agree with reported data in the literature for the case
without viscous dissipation within the reported Péclet range [27]. In this limiting scenario, the
onset of convective instability is not affected by the cross flow whereas the onset of absolute
instability is always stabilized by it. When viscous dissipations is present, the cross flow always
destabilises the onset of convective instability. Furthermore, this effect gets stronger as the
Gebhart number increases. On the other hand, this scenario changes at the transition to absolute
instability. Cross flow destabilisation is only observed for weak viscous dissipation. Beyond a
certain threshold, estimated here to be Gec1 ' 0.95, weak cross flows stabilise the onset of
absolute instability but stronger cross flows destabilise this onset. In addition, beyond a second
threshold, estimated here to be Gec1 ' 4.31, the cross flow is always a destabilising factor for the
onset of absolute instability. This behaviour leads to the peculiar condition where a transition to
absolute instability can be observed even without a temperature difference between horizontal
walls, i.e. even when Ra = 0. Finally, these transverse modes are always oscillatory in the
presence of cross flow. Although their frequency does not vary significantly with the Gebhart
number for weak cross flows, an increase in this parameter increases the critical frequency
associated with both onsets for strong cross flows.

0 10 20 30 40 50
Pe0

50

100

150

200

Ra

Ge

5

2

1

0.1

0.01

0 10 20 30 40 50
Pe0

50

100

150

200

250

300

Re@ΩD

Figure 2. Critical Rayleigh number (left) and frequency (right) for the onsets of convective
(dashed lines) and absolute (solid lines) instability as a function of Pe for different Ge.

All results presented so far were obtained using the zero group velocity conditions in Eqs (48),
in addition to the dispersion relation (47). However, these conditions are necessary but not
sufficient for the determination of an onset of absolute instability. In order to prove they indeed
represent such an onset, a graphical analysis of the saddle point formation is required, showing
a merger between originally upstream and downstream propagating modes. Figure 3 presents
this analysis for Pe = 30 and Ge = 1, showing the simultaneous pinching of the saddle point
α = 4.86559 − 5.86233 i and β = 0 in both complex wave number maps. A few other points
were similarly analysed and the same behaviour was observed. Hence, we expect this to be the
case for all data points shown in Fig. 2.

5. Conclusions
The present paper considered the effects of viscous dissipation on the onset of absolute instability
for a Newtonian fluid flowing inside a porous medium subjected to differentially heated horizontal
walls. Three different regimes were identified. The first one is the small viscous dissipation
regime, where the zero viscous dissipation behaviour is observed. On the other hand, the second
regime is the average viscous dissipation one, where weak cross flows stabilise this onset but
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Figure 3. Simultaneous pinching point in stream wise (left) and transverse (right) complex
wave number maps. Black dot indicates the saddle point located at α = 4.86559 − 5.86233 i,
β = 0, Ra = 59.5294 and ω = 201.085 for Pe = 30 and Ge = 1.

strong cross flows destabilise it. Finally, the cross flow always destabilises this onset in the third
regime with strong viscous dissipation.

Additional studies will be pursued to verify the existence of additional transversal modes and
well as the non existence of longitudinal or oblique modes. Furthermore, disturbance stream
function behaviour will be investigated for positive and negative Rayleigh numbers. These
studies will also include an extension to non-Newtonian fluids.
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