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Abstract. We obtain ab-initio estimations of the dynamic structure factor, S(q, ω), of Bose
gases at zero temperature. More precisely, we use the Genetic Inversion via Falsification of
Theories (GIFT) algorithm to perform analytic continuations of imaginary time correlation
functions computed via an exact Path Integral projector method. Using the hard-sphere
potential to model the two-body interactions between the atoms, we compute S(q, ω) changing
the gas parameter from the dilute regime (na3 = 10−4) up to the density corresponding to
superfluid 4He at equilibrium (na3 = 0.2138). With increasing density, we observe the emergence
of a broad multiphonon contribution accompanying the quasiparticle peak and a crossover of
the dispersion of elementary excitations from a Bogoliubov-like spectrum to a phonon-maxon-
roton curve. Apart from the low wave vector region, for na3 = 0.2138 the energy-momentum
dispersion relation and the static density response function, χ(q), turns out to be in good
agreement with the superfluid 4He experimental data at equilibrium density.

1. Introduction

The study of the collective modes and the dynamic properties of ultracold gases has always
represented a very important issue in quantum many-body theories. In particular, in the case
of Bose systems, this study is fundamental to understand the phenomenon of superfluidity and,
starting from the pioneering studies of Landau and Bogoliubov in the 1940s, it has been subject
of a huge number of works, both theoretical and experimental [1].

A physical insight on the dynamic behavior of quantum many-body systems can be given
estimating the dynamic structure factor, S(q, ω). This quantity, indeed, contains a wealth of
information about the nature and the energy spectrum of the excitations coupled to density
fluctuations and, for a system made up of N particles described by the Hamiltonian Ĥ, at zero
temperature it can be written as:

S(q, ω) =
1

2πN

∫ +∞

−∞

dt eiωt 〈Ψ0|ρ−q(t)ρq(0)|Ψ0〉
〈Ψ0|Ψ0〉 =

1

N

∑
n≥0

δ

(
ω − En − E0

�

) |〈Ψn|ρq|Ψ0〉|2
〈Ψ0|Ψ0〉 , (1)

where ρq(t) = eiĤt/�ρqe−iĤt/� is the time evolution of the density fluctuation operator ρq =∑N
i=1 e−iq·ri and |Ψ0〉 is the ground state of the many-body system. Equivalently, introducing
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a complete set of eigenstates |Ψn〉, S(q, ω) can be expressed in terms of all the excited states
which have non–zero overlap with the density perturbation, ρq|Ψ0〉, as in the right term of Eq. 1.

For dilute gases at low temperature, we can safely assume that the s-wave scattering length,
a, is much smaller than the mean inter-particle distance, n−1/3 (being n the density of the gas),
and the ground state of the many-body system can be described in terms of a macroscopic wave
function [2]. In this regime, mean-field theories are expected to provide an accurate description
of the system and the elementary excitations can be expressed in terms of a single quasiparticle.
Therefore, the dynamic structure factor reduces to a single peak, whose dispersion follows the
Bogoliubov spectrum

εB(q) =
�

2

2mξ2

√
(qξ)4 + 2(qξ)2 , (2)

in which ξ = 1/
√

8πna is the healing length. This result, predicted for the first time in 1947, has
been confirmed experimentally in 2002 by Steinhauer et al., who have been able to measure the
excitation spectrum of a dilute condensate of 87Rb atoms by means of Bragg spectroscopy [3].

As the density of the system increases, the interactions among the particles become more
and more important and the picture provided by mean-field theories is no longer valid. Indeed,
experimental measurements [4, 5, 6, 7, 8, 9] of the dynamic structure factor in liquid 4He, that is
a well-known benchmark of a dense Bose fluid, show a different behavior from the one predicted
for dilute systems. First of all, the S(q, ω) in liquid 4He presents, in addition to a sharp
“quasiparticle” peak, a broad contribution at higher frequencies, usually called multiphonon
branch, that indicates the possibility to induce incoherent excitations in the many-body system.
Furthermore, the dispersion of the main peak of S(q, ω) differs from the Bogoliubov spectrum,
Eq. 2, and presents a phonon-maxon-roton behavior, which is linear at low q and displays a
relative minimum for a non-zero wave vector.

To perform a reliable study of strongly interacting Bose gases, it is fundamental to develop
many-body theories able to include all the relevant correlations among the particles. For
instance, ab-initio numerical techniques based on Quantum Monte Carlo (QMC) simulations
have been widely used to calculate “exactly” the equilibrium properties of dense Bose fluids,
such as superfluid 4He, both at zero [10] and finite temperature [11]. Nevertheless, the study
of the dynamic properties of quantum many-body systems by means of QMC methods has to
face the problem of analytical continuation from purely imaginary to real time of the correlation
function entering the Fourier transform in Eq. 1, which strongly limits any possibility of a precise
determination of S(q, ω). Several methods have been developed in order to extract information
about the real-time dynamics of quantum systems from the limited and noisy data achievable in
QMC simulations. The most popular one is the Maximum Entropy (ME) method, a stochastic
technique based on the bayesian inference [12]. ME has been used in the study of several physical
systems, but it provides only qualitative results when applied in the analysis of quantum fluids
[13, 14]. Recently, a powerful algorithm called Genetic Inversion via Falsification of Theories
(GIFT) has been proposed; this algorithm can provide very accurate results for liquid and solid
4He, being able to recover both the sharp quasiparticle peak and the multiphonon branch, each
with the correct relative spectral weight [15].

In this work, we want to study, by means of QMC methods, the dynamic properties of Bose
gases at zero temperature, focusing on the crossover from weak to strong interaction regime. To
model the interactions among the particles, we use the two-body hard-sphere (HS) potential

V (r) =

{ ∞ (r ≤ a)
0 (r > a)

, (3)

where the range of the potential a coincides with the s-wave scattering length. This model has
been widely used for the study of many-body systems with short-range repulsive interactions,
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not only in the dilute regime, where the details of the interatomic potential are irrelevant, but
also in the dense regime [16, 17, 18, 19]. The HS model, indeed, serves as a reference for
those systems in which the leading part of the two-body potential is the repulsive hard-core at
short distances and it has been used to characterize semi-quantitatively the static properties
of superfluid 4He [17, 18]. Moreover, the HS model provides one with a well defined system,
where quantum correlations can be investigated from the weak to the strong interaction regime
by varying a single parameter, i.e. the reduced density in units of the HS range.

The structure of the paper is as follows. In Section 2 we introduce the numerical methods used
in our study, namely the Path Integral Ground State (PIGS) method, applied to the calculation
of the imaginary-time correlation functions, and the GIFT algorithm, for the estimation of the
dynamic structure factors from the PIGS data. In Section 3 we show our results for the dynamic
structure factor, for the dispersion law of the elementary excitations and for the static density
response function. Finally, in Section 4 we draw our conclusions.

2. Numerical Methods

2.1. Path Integral Ground State method

In this work, we use the Path Integral Ground State (PIGS) method [10] to evaluate ground-
state expectation values of static and imaginary time dynamic properties of the many-body
system. PIGS is a QMC algorithm in which the many-body ground state wave function Ψ0(R)
is expressed as an evolution in imaginary time of a trial wave function ΨT (R), where R = {ri}N

i=1
represents the set of the positions of the N particles. Indeed, if the trial state is not orthogonal

to the ground state, the imaginary time evolution operator e−τĤ acts on ΨT , allowing the
exponential decay of any overlap with the excited states with respect to the overlap with Ψ0.
Thus, when the imaginary time τ is large enough, it projects ΨT (R) onto the ground-state wave
function, according to the formula

Ψ0(R)√〈Ψ0 | Ψ0〉
= lim

τ→∞
Nτ

∫
dR′ G(R,R′; τ)ΨT (R′) , (4)

where Nτ is a τ–dependent normalization factor and G(R,R′; τ)=〈R|e−τĤ |R′〉 is the imaginary
time propagator.

In general, G(R,R′; τ) is not known, but it is possible to develop analytical expressions
which approximate it accurately in the limit of short imaginary times [11, 20, 21, 22]. For this
reason, it is convenient to rewrite the propagator in Eq. 4 as a convolution of M propagators
G(Rl,Rl+1; δτ) on a short time δτ = τ/M . Making use of a certain scheme to approximate
G(Rl,Rl+1; δτ), we are able to obtain an accurate analytical form for the ground state wave
function

Ψ0(RM)√〈Ψ0 | Ψ0〉
� Nτ

∫
dR1 . . . dRM−1

M−1∏
l=0

G(Rl,Rl+1; δτ)ΨT (R0) , (5)

and finally we are able to calcualte a generic expectation value 〈Ψ0 |Ô|Ψ0〉 as a statistical average
over many random sets of 2M +1 configurations, {Rl}2M

l=0, obtained by sampling the probability
density

p(R0,R1, . . . ,R2M ) = N 2
τ ΨT (R0)

2M−1∏
l=0

G(Rl,Rl+1; δτ)ΨT (R2M ) , (6)

with a Metropolis-like algorithm. In order to sample correctly and efficiently the Bose symmetry
of the ground-state wave function, we adopt a canonical worm algorithm [20, 23]. For Bose
systems, the PIGS method can be considered “exact”: indeed, controlling the parameters M
and δτ , it is possible to systematically improve the accuracy of Eq. 5 and to reach a regime in
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which the approximations affect the numerical results to an extent which is below the statistical
error.

Even though PIGS results do not depend on the approximation for the imaginary time
propagator and on the trial wave function used [20, 24], a wise choice of these two ingredients
can notably increase the efficiency of the algorithm. In our work, we use the pair-action
approximation for the propagator at short imaginary times [11, 25, 26]:

G(R,R′, δτ) � G0(R,R′, δτ)
∏
i<j

grel(rij , r
′
ij , δτ)

g0
rel(rij , r′ij , δτ)

. (7)

Here, G0(R,R′, δτ) is the N -particle free propagator, grel(rij , r
′
ij , δτ) is the two-body propagator

of the interacting system, which depends on the relative coordinates rij = ri−rj and r′ij = r′i−r′j,

and g0
rel(rij , r

′
ij , δτ) is the free propagator for two particles. In the study of the HS system, it is

convenient to approximate the two-body interacting propagator with its high energy expansion,
proposed for the first time by Cao and Berne [22]:

grel(r, r
′, δτ)

g0
rel(r, r

′, δτ)
= 1 − a(r + r′) − a2

rr′
e−m[rr′+a2−a(r+r′)](1+cos θ)/(2�2δτ) , (8)

where θ is the angle between r and r′, r = |r| and r′ = |r′|.
As trial wave function, we choose the translationally invariant Jastrow wave function

ΨT (R) =
∏
i<j

f(|ri − rj |) , with f(r) =

{
0 (r ≤ a)

sin[k(r−a)]
r (r > a)

. (9)

The function f is the solution of the two-body s-wave scattering problem with a HS potential
and the wave vector k is chosen such as the derivative f ′(r) vanishes at r = L/2, where L is the
size of the cubic simulation box, in order to fulfill the periodic boundary conditions [19].

2.2. GIFT algorithm

With the PIGS method described above, we can obtain the imaginary time intermediate
scattering function, F (q, τ), i.e. the imaginary time correlation function of the density

fluctuation operator, ρ̂q =
∑N

i=1 e−iq·̂ri :

F (q, τ) =
1

N

〈Ψ0|eτĤ ρ̂−q e−τĤ ρ̂q|Ψ0〉
〈Ψ0 | Ψ0〉 . (10)

This quantity is related to the dynamic structure factor, S(q, ω), via the Laplace transform

F (q, τ) =

∫ ∞

0
dω e−ωτ S(q, ω) . (11)

Therefore, if we want to estimate S(q, ω) from the PIGS data for F (q, τ), it is necessary to
invert this integral equation.

However, the inversion of Eq. 11 is a well-known ill-posed problem: indeed, given the
smoothing nature of the kernel K(ω, τ) = e−ωτ , several spectral functions S(q, ω), even with
very different features, can give similar results for F (q, τ). Furthermore, we have to notice
that, in QMC simulations, F (q, τ) is accessible only in correspondence of a finite number of
imaginary time values affected by statistical uncertainties. As a consequence, there exists an
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Figure 1. GIFT results for the dynamic structure factor S(q, ω) at na3 = 10−2 (left panel)
and at na3 = 0.2138 (right panel), for three different values of the wave vector q. The peak at
qξ = 0.635 in the left panel and the peak at qξ = 1.732 in the right panel have been rescaled by
a factor 0.33 and 0.25 respectively. The inset figures show color maps of S(q, ω) as a function
of q.

infinite number of spectral functions which are compatible with a given numerical data set for
the imaginary time correlation function.

To tackle this problem, we have used the Genetic Inversion via Falsification of Theories
(GIFT) method [15]. The basic idea of this algorithm is that, instead of finding a unique
solution for the inverse problem, it explores a wide space of models by means of a genetic
algorithm in order to search and collect a large set of spectral functions compatible with a given
QMC estimation for F (q, τ).

The final estimation of S(q, ω) is obtained averaging all the spectral functions collected: this
procedure washes out the unphysical spurious features, which arise from statistical fluctuations,
and reinforce the features shared by most of the collected spectral functions, which can be
attributed to the real dynamic structure factor.

The GIFT technique has been successfully applied to a number of quantum many-body
systems: liquid and solid 4He [15, 27], bosons with soft-core repulsive potentials [28], two-
dimensional 4He [29] and two-dimensional normal liquid 3He [30]. In these applications, GIFT
has allowed to accurately determine the energy-momentum dispersion relation, E(q), to discern
the multi-excitations and to obtain the static density response function, χ(q) [31, 32, 33]. More
details of the GIFT method can be found in Ref. [15].

3. Results

In order to calculate the imaginary time correlation function F (q, τ) in a HS Bose gas at a given
density, we performed PIGS simulations of N = 400 particles interacting with the pair potential
in Eq. 3 and confined inside a cubic box with periodic boundary conditions. Typical results of
the dynamic structure factor obtained with the GIFT algorithm are shown in Fig. 1.

In a regime where the interactions among the particles are moderately weak (gas parameter
na3 = 10−2, left panel of Fig. 1), S(q, ω) presents, at low q, a single narrow peak with
a linear dispersion in q: this indicates clearly the excitation of phonons in the quantum
system. As the wave vector increases, the excitation peak broadens, suggesting the emergence of
physical processes involving the damping of these phonons. For large values of the wave vector
(qξ � 2.886), S(q, ω) shows, in addition to the main peak, also a broad tail at high frequencies,
indicating the emergence of a multiphonon branch in the spectrum of the excitations.
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Figure 2. Dispersion of
the central position of the
main peak in S(q, ω) for dif-
ferent values of the gas pa-
rameter.The orange solid line
is the Bogoliubov prediction
for the excitation spectrum
(Eq. 2) and the black dashed
line is the experimental disper-
sion of the elementary excita-
tions of superfluid 4He at SVP
[34]. Where not shown, sta-
tistical uncertainties are below
the symbol size.

When the interaction strength increases, the behavior of the dynamic structure factor changes
notably. In the right panel of Fig. 1, we show S(q, ω) for the HS gas at the density na3 = 0.2138:
this system is particularly interesting since it has been used as a reference system for the
simulation of superfluid 4He at saturated vapor pressure (SVP) in a previous work which
considers the hard-wall potential as the leading part of the He-He interaction and the attractive
tail as a weak perturbation [18]. For small values of the wave vector q, we can see that S(q, ω)
is exhausted by a single sharp peak, whose frequency follows the phonon dispersion ω(q) = cq
(being c the speed of sound), similarly to the behavior of the dilute gas at low q. However,
the broadening of the main peak and the appearance of the multiphonon contribution become
relevant already at values of the wave vector which are smaller compared to the case of the
dilute gas (qξ � 0.5). Furthermore, we notice that the dynamic structure factor shows again a
sharp peak for 1.5 � qξ � 2, indicating the presence of well defined quasiparticles even in this
range of wave vectors. The dispersion of these elementary excitations is not monotonous with
q, but it displays a relative minimum, showing that the sharp peak in S(q, ω) can be associated
to the excitation of a roton.

The emergence of the roton, as the density of the gas increases, shows up if we plot the
dispersion ε(q) = �ω(q) of the main peak of the dynamic structure factor as a function of the
wave vector q (Fig. 2). At the lowest gas parameter that we have studied, na3 = 10−4, the
dispersion law ε(q) follows very well the Bogoliubov prediction (Eq. 2). At higher densities,
we clearly notice some deviations from this behavior, both for small and large values of q. In
the phonon region, we notice that the excitation energy is higher than the one expected from
εB(q), indicating that the speed of sound c increases as the density of the gas increases. For
wave vectors 1.3 � qξ � 2.5, instead, we notice that the energy of the excitation decreases
for increasing gas parameter. We can also notice that, for na3 � 5 × 10−2, the spectrum of
elementary excitations shows a change of curvature, which develops into a roton minimum when
the gas parameter na3 � 10−1.

It is interesting to compare the dispersion law of elementary excitations for the HS gas at
na3 = 0.2138 (i.e. the gas parameter corresponding to superfluid 4He at equilibrium density) to
the one obtained experimentally from inelastic neutron scattering in superfluid 4He [34], which
is also shown in Fig. 2. For small wave vectors, our results for the energy of the excitation is
larger than the experimental data. This indicates that, as one should expect, the attractive tail
of the He-He potential plays a relevant role in determining the speed of sound in the system.
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(a) (b)

(c) (d)

Figure 3. Spectrum of the elementary excitations ε(q) of the HS-gas for different values of
the gas paramenter: na3 = 10−2 (panel a), na3 = 5 × 10−2 (panel b), na3 = 10−1 (panel c),
na3 = 0.2138 (panel d). GIFT results (red squares) are compared with the estimation of εF (q)
provided within the Feynman approximation, Eq. 12 (blue circles). Where not shown, statistical
uncertainties are below the symbol size.

On the contrary, the dispersion law of elementary excitations obtained with our QMC approach
is in good agreement with the experimental measurements in the roton region and for higher
momenta: this suggests that the HS model is able to reproduce the density fluctuation spectrum
of superfluid 4He for wave vectors reciprocal to the mean interparticle and shorter distances [35].

A qualitative description of the appearance of the roton in the excitation spectrum for
increasing na3 can be obtained via the Feynman’s approximation [36]

εF (q) = �ωF (q) =
�

2q2

2mS(q)
, (12)

in which S(q) is the static structure factor. This relation is easily obtained from the f -sum rule

∫ ∞

0
dω ωS(q, ω) =

�q2

2m
(13)

with the assumption that the dynamic structure factor can be written as a single delta-peak
S(q, ω) = S(q)δ (ω − ωF (q)) and indicates that the emergence of a minimum in ε(q) can be
associated to the emergence of a maximum in S(q) and thus to the formation of the microscopic
local structures typical of dense fluids [35]. In Ref. [37], the excitation spectrum of the HS gas
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Figure 4. Static density re-
sponse function χ(q) for the
HS gas at different values of
the gas parameter. The or-
ange solid line is the mean-
field result for χ(q) and the
black solid line is the ex-
perimental static density re-
sponse function of superfluid
4He at SVP [40]. Where not
shown, statistical uncertain-
ties are below the symbol size.

has been obtained from PIGS calculation of S(q), making use of the Feynman’s approximation,
and it has been shown that, even within this approximated scheme, a roton minimum appears at
high density. In order to test this approximation from a quantitative point of view, we compare
in Fig. 3 the accurate result for ε(q), obtained from the GIFT estimation of the dynamic
structure factor, with the approximated result εF (q) obtained from the PIGS results for the
static structure factor, according to Eq. 12. We can see that the Feynman’s approach is able
to describe accurately the dynamics of the HS gas only for small values of the wave vector q.
At large q, instead, we notice a discprepancy between the Feynman’s prediction εF (q) and the
GIFT results, which becomes larger as the gas parameter increases. From this comparison, we
can conclude that the assumption of describing the dynamic structure factor in terms of a single
peak is accurate only in the phonon region, while the secondary multiphonon branch gives a
relevant contribution at large wave vectors, especially for strongly interacting systems.

In our study, we also calculate the static density response function χ(q). This quantity
describes the linear response in density to a weak perturbation which is spatially modulated
with a wave vector q. In the limit q → 0, χ(q) converges to the isothermal compressibility [38].
From the knowledge of the dynamic structure factor, the static density response function can
be obtained using the following formula:

χ(q) = −2n

∫ ∞

0
dω

S(q, ω)

ω
. (14)

In figure 4 we present the static density response function calculated from the reconstructed
dynamic structure factors of the HS system for different gas parameters. In the weakly
interacting regime (na3 = 10−4), χ(q), for the available wave vectors, is monotonically
decreasing, consistently with the behavior of the dilute gas. Comparing our numerical results
with the curve for χ(q) obtained within the mean-field approximation based on the Bogoliubov
dispersion (Eq. 2), that is

χ(q) =
2mξ2

�

2

(qξ)2 + 2
, (15)

we notice an excellent agreement at large q, while at small q we find that the QMC estimates
are systematically slightly below the mean-field prediction. This discrepancy may be due to
finite-size effects, which are not easy to evaluate since the set of the wave vectors q achievable
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in our QMC simulations depends on the geometry of the box and thus a calculation of χ(q) at
the same q but with different sizes of the box is not straightforward. However, the statistical
uncertainties of our results do not allow to exclude a statistical origin of such discrepancy.

By increasing the gas parameter, we observe a decreasing of the value of χ(q) at small q, which
indicates a decreasing of the compressibility of the gas, while at intermediate values of q, we can
see the emergence of a peak, which becomes clear for na3 = 10−1, i.e. the same gas parameter at
which the roton minimum appears in ε(q). The behavior displayed by the static density response
function confirms that in a strongly interacting many–body Bose system, characterized by the
presence of a hard-core interaction, the preferred modulation of the system, revealed by a peak
in χ(q), corresponds to a wave vector in the vicinity of the roton minimum. Such peak is a
precursor of a Bragg–like peak which appears during crystallization [39].

As we did for the dispersion relation of the elementary excitations, it is interesting to compare
our numerical result for the static response function of the HS gas at na3 = 0.2138 with the
experimental measurements for superfluid 4He at SVP [40]. As we can see in figure 4, there is a
significative difference for qξ � 1.4, which reflects a discrepancy in the compressibility, and thus
in the speed of sound (see Fig. 2), between the HS gas and superfluid 4He. On the contrary,
we can notice that, for momenta in the roton and post-roton regions, the agreement between
the two curves is good. This result confirms the hypothesis that superfluid 4He behaves like a
HS system for wave vectors corresponding to the inverse of the mean interatomic distance and
above [35].

4. Conclusions

In this work, we have estimated the dynamic structure factor and the spectrum of elementary
excitations for Bose HS gases at zero temperature, ranging from the dilute to the dense regime,
by means of ab-initio calculations based on QMC methodologies. The numerical approach
followed, which makes use of the GIFT algorithm to perform the analytical continuation of the
“exact” PIGS results for the imaginary time correlation functions, is one of the most powerful
methods presently available and allow us to get very accurate results for the spectral functions,
even for strongly interacting systems, where it is difficult to describe properly all the relevant
correlations arising among the quantum particles. We have been able to see, in the dispersion
of the elementary excitations, a crossover from the Bogoliubov spectrum, predicted in mean-
field theories and accurate for weakly interacting gases, to the phonon-maxon-roton spectrum,
experimentally seen in dense Bose liquids, such as superfluid 4He. We also show that, for large
values of the wave vector of the density fluctuation, the dynamic structure factor presents a
broad multiphonon contribution at high frequencies, which becomes relevant as the density of
the system increases, making quantitatively inaccurate the Feynman’s approximation for the
spectrum of the elementary excitations. Remarkably, for na3 = 0.2138, the gas parameter
corresponding to superfluid 4He at equilibirum density, the hard-sphere model turns out to
describe accurately the energy–momentum dispersion relation and the static density response of
superfluid 4He in the roton region; this suggests that, for wavelengths comparable to interatomic
distances, the low–energy dynamic properties are dominated by the hard-core repulsive part of
the interaction potential.
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