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LiteRed 1.4: a powerful tool for reduction of

multiloop integrals

Roman N. Lee

Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia

E-mail: R.N.Lee@inp.nsk.su

Abstract. We review the Mathematica package LiteRed, version 1.4.

1. Introduction
Multiloop integrals are the building blocks of many calculations of radiative corrections in QFT.
One of the key approaches to the calculation of the multiloop integrals is the IBP reduction,
based on the integration-by-parts identities between integrals [1, 2]. The IBP reduction almost
necessarily should be done with the aid of various computer programs. One of the most
successful methods of the IBP reduction is the Laporta algorithm [3]. The algorithm is easy to
implement and to use, and allows for a number of programming improvements. These advantages
explain why many modern most powerful reduction programs heavily rely on this algorithm, in
particular, AIR [4], FIRE [5, 6], Reduze [7, 8], and many private versions.

However, the Laporta algorithm has some weak points, which may put restrictions on its
application. In particular, being intrinsically a brute-force search, this algorithm is both time-
and memory-consuming. Another approach to the reduction is a derivation of the symbolic
reduction rules. Its advantages are obvious: nothing is being solved in the process of reduction,
therefore, the reduction is very fast. Symbolic rules are small in size, so, they can be easily saved
for future calculations. The bottleneck of this approach is the search of these symbolic rules.
Much effort has been devoted to the developement of the approach connected with the notion
of the Groebner basis [9, 10, 11, 12], but, for now, this approach is far from being satisfactory.
Probably, the only, partly successful, attempt to implement this approach has been made in
FIRE, where the notion of s-bases [11, 12] has been used.

Recently, the new IBP reduction package LiteRed has been presented in Ref. [13]. This
package uses completely different approach to the reduction. At first stage it tries to find
symbolic reduction rules using heuristics. Then it applies the rules to the specific reduction.
Found rules are very lightweight and can be easily stored for the reusage. In this contribution
we describe the version 1.4 of the LiteRed package. The package can be downloaded from
http://www.inp.nsk.su/˜lee/programs/LiteRed/.

2. Multiloop integral
To fix notation, let us assume that we are interested in the calculation of the L-loop integral
depending on the E external momenta p1, . . . , pE . There are N = L(L + 1)/2 + LE scalar
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products depending on the loop momenta li:

sij = li · qj , 1 6 i 6 L, j 6 L+ E, (1)

where q1,...,L = l1,...,L, qL+1,...,L+E = p1,...,E .
The general form of the integral is the following

J (n) = J(n1, n2, . . . , nN ) =

∫
ddl1 . . . d

dlL
Dn1

1 Dn2
2 . . . DnN

N

, (2)

Dα = aijα li · lj + 2bikα li · pk + cα .

Here aα, bα, and cα are L × L matrices, L × E matrices, and numbers, respectively. As usual,
we assume that D1, . . . , DN form a complete basis in the sense that any sik can be uniquely
expressed in terms of Dα. The multiindex n = (n1, . . . , nN ) can be thought of as a point in
ZN . Some of Dα correspond to the denominators of the propagators, others may correspond to
the irreducible numerators. E.g., the K-legged L-loop diagram with generic external momenta
corresponds to E = K − 1 and the maximal number of denominators is M = E + 3L − 2, so
that the rest N −M = (L− 1)(L+ 2E − 4)/2 functions correspond to irreducible numerators.

2.1. Differential equations
The differential equations can be used for finding the master integrals. The simplest type of
such equations is the differential equation with respect to the mass. Probably, the first example
of their application is presented in Refs. [14, 15, 16]. The differential equations with respect to
the invariant constructed of the external momenta have been introduced and applied in Refs.
[17, 18, 19]. In general case, when there are E > 2 external vectors, we have the following
formulas:

∂

∂ (p1 · p2)
J (n) =

∑[
G−1

]
i2
pi · ∂p1J (n) =

∑[
G−1

]
i1
pi · ∂p2J (n) ,

∂

∂
(
p2

1

)J (n) =
1

2

∑[
G−1

]
i1
pi · ∂p1J (n) . (3)

where G = G (p1, . . . , pE) =

 p2
1 · · · p1 · pE
...

. . .
...

p1 · pE · · · p2
E

 is a Gram matrix.

Acting by the operator on the right-hand side on the integrand and performing the IBP
reduction, one obtains the differential equation for J (n).

2.2. Dimensional recurrences
Probably, the first appearance of the dimension shifting relations is in Ref. [20], where they have
been derived for certain three-loop integrals in the momentum representation. Later, in Ref.
[21] Tarasov derived dimensional relations using the paramentric representation. It is interesting
that the first approach led to the lowering recurrence, while the latter one led to the raising
recurrence. The lowering (raising) recurrence relates one integral in d+ 2 (d− 2) dimensions to
several integrals in d dimensions.

As it was shown in Ref. [22], the two recurrences can be represented as

J (d−2) (n) = (µ/2)L det

{
2δij

∂Dk

∂sij
Ak|i,j=1...L

}
J (d) (n) . (4)
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J (d+2) (n) =
(2µ)L [V (p1, . . . , pE)]−1

(d− E − L+ 1)L
P (B1, . . . , BN ) J (d) (n) , (5)

where µ = ±1 for Euclidean/Minkovskian metric, αL = α (α+ 1) . . . (α+ L− 1) is
the Pochhammer symbol, V (v1, . . . vk) = detG (v1, . . . vk) is the Gram determinant, and
P (D1, . . . , DN ) = V (q1, . . . qL+E).

The operators Aα and Bα are defined as follows(
AiJ

(D)
)

(n1, . . . , nN ) = niJ
(D) (n1, . . . , ni + 1, . . . , nN ) ,(

BiJ
(D)
)

(n1, . . . , nN ) = J (D) (n1, . . . , ni − 1, . . . , nN ) . (6)

3. Parametric representation
The parametric representation (or Feynman parametrization), is, of no doubt, one of the most
useful tools for the multiloop calculations. It is important for both analytical (in particular,
with subsequent Mellin-Barnes representation) and numerical (in particular, together with sector
decomposition) calculations of the multiloop integrals. Moreover, it may serve as a fundamental
definition of the multiloop integrals for the case of non-integer dimensionality d.

But it is also important that the parametric representation is very useful for revealing relations
between the integrals. One example is Tarasov’s derivation of the raising dimensional recurrence
relation [21]. In Ref. [23] the algorithm, based on the use of parametric representation, for the
identification of the master integrals has been introduced. In recent paper [24] it was shown that
parametric representation allows for a simple determination of the number of master integrals
in the given sector.

LiteRed uses parametric representation for two purposes. First, it finds equivalent simple
sectors by comparing their parametric representation. To account for the possible permutation
of the parameters, it uses an approach combining the ideas from Ref. [23] and Ref. [25]. Second,
it uses parametric representation to determine zero sectors. In this section we describe shortly
this new algorithm.

The parametric representation of the integral J (n) has the form

J(n) =
Γ (Σn− Ld/2)∏

α Γ (nα)

∫ ∏
α

dzαz
nα−1
α δ (1− Σz)

FLd/2−Σn

U (L+1)d/2−Σn
, (7)

where Σn =
∑

α nα, Σz =
∑

α zα, U and F are the homogeneous polynomials of degrees L and
L+ 1, respectively. These polynomials can be expressed in terms of quantities

aij =
∑
α

zαa
ij
α , bi =

∑
α

zαb
ij
α pj , c =

∑
α

zαcα (8)

as follows

U = det (a) , F = cdet (a)−
(
aAdj

)ij
bi · bj , (9)

where aAdj = det (a) a−1 is the adjoint matrix. The representation (7) does not make sense
when some of nα are nonpositive integers. In this case one has to replace the corresponding
integration with the derivative at zero point. The resulting formula can be written as

J(n) = Γ (Σn− Ld/2)
∏
α

n̂αδ (1− Σ+z)
FLd/2−Σn

U (L+1)d/2−Σn
, (10)
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where the functional n̂α is determined as

n̂α[φ(zα)] =

{ ∫∞
0

dzαz
nα−1
α

Γ(nα) φ(zα) nα > 0

(−1)nαφ(−nα)(0) nα 6 0
(11)

and the sum Σ+z =
∑

α θαzα (θα = Θ(nα − 1/2)) goes over the variables, corresponding to the
denominators. Remarkably, it is possible to rewrite Eq. (10) in the form, which contains U and
F only in the combination F + U . Similar to Ref. [24], we have

J(n) =
Γ [d/2]

Γ [(L+ 1) d/2− Σn]

∏
α

n̂αG
−d/2 , G = F + U . (12)

The scaleless integral can be defined as the one which gains additional non-unity factor under
some linear transformation of the loop momenta. In dimensional regularization scaleless integrals
are set to zero. If j (θ1, . . . , θN ) is scaleless, then all integrals of the sector (θ1, . . . , θN ) are zero.
We will call such a sector a zero sector.

A simple criterion of zero sectors has been formulated in Ref. [26]. According to this criterion,
the sector is zero if the solution of the IBP equations in the corner point (θ1, . . . , θN ) result in
the identity j (θ1, . . . , θN ) = 0. Note that this criterion may miss some scaleless sectors. Let
us explain on a simple example why this happens. Consider the massless one-loop onshell
propagator integral

J (n1, n2) =

∫
ddl

[l2]n1

[
(l − k)2

]n2
, k2 = 0 .

Obviously, this integral is zero for any n1 and n2. However, it can be explicitely checked that
the solution of the IBP identities in the corner point of the sector (1, 1) does not result directly
to J (1, 1) = 0. In order to prove that the integral J (1, 1) is scaleless, let us consider instead the
following operator

O = ∂l ·
(
l + (l · k) k̃ −

(
l · k̃

)
k
)
,

where k̃ is an auxiliary vector chosen to satisfy the conditions k̃2 = 0 and k̃ · k = 1. It is
easy to check that Oj (1, 1) = (d− 4) j (1, 1). Since the operator O is a generator of the linear

transformation l → l + ε
(
l + (l · k) k̃ −

(
l · k̃

)
k
)

, the integral j (1, 1) is scaleless. The reason

why the IBP identities failed to lead to the identity J (1, 1) = 0 is that the construction of this
identity required introduction of the auxiliary vector k̃.

In some cases the number of zero sectors overlooked by the criterion of Ref. [26] is rather big.
So, we formulate below another criterion, based on parametric representation, which detects
virtually all zero sectors.

As we said above, for the detection of zero sectors it is sufficient to consider only the integral
in the corner point of the sector. In particular, we may set all zβ, corresponding to numerators,
to zero. In what follows we assume this is done and zα denotes a parameter, corresponding to
the denominator of the sector. Consider an infinitesimal scaling of these parameters

zα → z̃α = (1 + kαω) zα . (13)

Here ω is the infinitesimal parameter, and kα are some finite coefficients. Suppose that we are
able to find such kα that the function G scales as follows:

G (z̃) = (1 + ω)G (z) . (14)
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p

q

Figure 1. Two-loop massless onshell vertex.

Then, making the change (13) in Eq. (12), we get

J (θ) =

[
1 + ω

(∑
α

kα − d/2

)]
J (θ) . (15)

The equation (14) does not depend on d, therefore, suitable kα, if they exist at all, can be
chosen also independent of d. Therefore, the coefficient in Eq. (15) in front of ω is not zero, and
the integral J (θ) is scaleless.

Note that Eq. (14) can be cast as∑
α

kαzα
∂G(z)

∂zα
= G(z) , (16)

which should be understood as equality of the two polynomials of zα. Collecting the coefficients
in front of distinct monomials, we obtain a linear system of equation with respect to kα. The
existence of the solution of this system can be established by ordinary algebraic means.

Therefore, we get the following
Criterion of zero sector: For a given sector, construct G = F + U . The sector is zero if
Eq.(16) has a z-independent solution with respect to kα.

It is just this criterion which is implemented in LiteRed1.4.

4. How LiteRed finds reduction rules
When trying to find the complete set of the reduction rules, LiteRed performs, roughly
speaking, the same steps as a person would do. Let us explain this on the example of the
two-loop massless onshell vertex shown in Fig. 1. We choose the basis

{D1, . . . , D7} =
{
l2, r2, (p− l)2, (q − r)2, (−l + p+ r)2, (l + q − r)2, (l − r)2

}
. (17)

The function D7 = (l − r)2 corresponds to the irreducible numerator. The diagram in Fig. 1
corresponds to the sector (1, 1, 1, 1, 1, 1, 0) (see the definition of sectors in Ref. [13]).

• First, LiteRed solves the IBP and LI identities in the general point n =
(n1, n2, n3, n4, n5, n6, n7) with respect to the most complex integrals. Then it shifts the
indices in the rules found so that they all have the form J(n1, n2, n3, n4, n5, n6, n7)→ . . .

• After that it analyzes the right-hand side to determine when each rule is applicable.
The inapplicability may come from zeros in the denominators, or from the positive shifts
in the indices, corresponding to the numerator, e.g., if the right-hand side contains the
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integral J(n1, n2, n3, n4, n5, n6, n7 + 1). Note that it often happens that the latter integral
appears with the coefficient n7 and then does not result in the applicability condition
n7 6= 0. Acting in this way, LiteRed finds 9 rules with the following applicability
conditions: {c1, . . . , c7} = {n6 6= 1, n5 6= 1,¬ (n3 = 1 ∨ n7 = 0) ,¬ (n4 = 1 ∨ n7 = 0) , n6 6=
1,¬ (n1 = 1 ∨ n7 = 0) ,¬ (n6 = 1 ∨ n7 = 0) ,¬ (n2 = 1 ∨ n7 = 0) ,¬ (n5 = 1 ∨ n7 = 0)}.
• None of the found rules is applicable when the condition ¬(c1 ∨ . . . ∨ c7) is fulfilled.
LiteRed reduces this condition to disjunctive normal form: (n5 = 1 ∧ n6 = 1 ∧ n7 = 0) ∨
(n1 = 1 ∧ n2 = 1 ∧ n3 = 1 ∧ n4 = 1 ∧ n5 = 1 ∧ n6 = 1).

• Then it takes the first alternative (n5 = 1 ∧ n6 = 1 ∧ n7 = 0) and tries to find the rules for
the integral J(n1, n2, n3, n4, 1, 1, 0). It starts from the IBP and LI identities at the point
(n1, n2, n3, n4, 1, 1, 0) and checks for the possibility to shift indices in order to reduce the
found rules to the form J(n1, n2, n3, n4, 1, 1, 0) → . . .. In contrast to all-indeterminate
case, this is not always possible, so if the appropriate rule is not found, LiteRed starts
to generate and solve identities in the points neighboring (n1, n2, n3, n4, 1, 1, 0). In fact,
this search is the Laporta algorithm augmented by the procedure which checks for possible
shifts.

• When the appropriate rule is found, the condition of its applicability is constructed. In our
case, this condition looks like n5 = 1 ∧ n6 = 1 ∧ n7 = 0 ∧ n4 6= 1.

• Performing the same steps, LiteRed finds 17 rules which reduce all integrals in the sector
except J(1, 1, 1, 1, 1, 1, 0) which it declares a master.

Note that LiteRed succesfully finds the reduction rules for much more complicated cases
than the one presented above. In particular, it succeeds for the four-loop massless propagators
and some other complicated cases.

5. Short reference guide for LiteRed package
The package is loaded by the command <<LiteRed‘. Let us describe briefly the most important
procedures of LiteRed .

Declare[vars,type] — variable declaration. Here vars — either variable name or the list of
variable names, type is either Vector or Number. Be sure to declare all variables that
enter the basis definition (see below). Both vectors and numbers can be declared in one
construct.
Example: Declare[{l,q},Vector,mm,Number].

NewBasis[name,{D1,D2,. . . },loopmoms,options] — definition of the basis. Here name is
the variable which will be the basis name. It will appear in many commands, associated with
a given basis, like GenerateIBP[name]. Derived objects, like IBP identities, reduction
rules, will be associated with this name. Make sure this name is not used anywhere else, but
in the appropriate commands. {D1,D2,. . . } is a list of functions Dα. The scalar product is
entered as sp[p1,p2]. Third argument loopmoms is a list of loop momenta. The following
options can be appended:

• Directory->"dirname" — determine the directory, where all basis definitions will
be saved.
• Append->True — if the set of the functions Dα, given in the first parameter, is not

complete, append some automatically chosen numerators.
• GenerateIBP->True — generate IBP identities, see the corresponding procedure

below.
• AnalyzeSectors->True — determine zero and simple sectors, see the corresponding

procedure below.
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• FindSymmetries->True — find equivalent sectors, see the corresponding procedure
below.

In case of success, NewBasis creates objects Ds[name], SPs[name], LMs[name],
EMs[name], and Toj[name]. Their meaning is explained in the output of the NewBasis
procedure. The integrals of the basis are denoted as j[name,n1,n2,...].
Example: NewBasis[b1,{sp[l,l]+mm,sp[l-q,l-q]},{l},Directory->"bdir"]
Convert the explicit expression to j form with Toj:
Toj[b1,sp[l,q](sp[l,l]+mm)ˆ-1(sp[l-q,l-q])ˆ-2]
gives j[b1,0,2]-j[b1,1,1]+(sp[q,q]-mm)j[b1,1,2]. The inverse transformation
can be done with Fromj[expr].

GenerateIBP[name] generates IBP and LI identities for the basis. IBP identities in the point
(n1, n2, . . .) can be retrieved by IBP[name][n1,n2,. . .].

AnalyzeSectors[name,pattern] finds zero sectors and some other objects as it reports in
the output. ZeroSectors[name] is a list of zero sectors, each element have the form
js[name,θ1,θ2,...]. The optional parameter pattern tells the procedure to analyze only
sectors matching pattern. E.g. if the last two Dα correspond to irreducible numerators, use
AnalyzeSectors[name,{__,0,0}]. This procedure should be called before the call of
FindSymmetries.

FindSymmetries[name] finds equivalent sectors and forms. It generates several objects
as it reports, including the list of unique sectors UniqueSectors[name] and the
list MappedSectors[name] of sectors which can be mapped onto unique ones. For
each mapped sector js[name,θ1,θ2,...] the mapping rules can be retrieved as
jRules[name,θ1,θ2,...].

SolvejSector[js[name,θ1,θ2,...],options] is a procedure which performs a heuristic
search of the reduction rules for a given sector. If it succeeds, the list of found rules can be
retrieved as jRules[name,θ1,θ2,...]. It returns the number of master integrals found.
Typical usage is SolvejSector/@UniqueSectors[name]. The useful options include

• Depth -> n set heuristic search depth. Default is n = 2
• SR -> True use internal symmetries of the sector.
• TimeConstrained -> n set time constraint in seconds.

DiskSave[name] save all definitions to disk (see option Directory in NewBasis).

IBPReduce[expr] performs the IBP reduction of the expression expr .

Several additional tools are included in the package:

Dinv[j[name,n1,n2,...],sp[p,q]] returns the derivative with respect to the invariant
constructed of the external momenta.

RaisingDRR[name,n1,n2,...] returns the right-hand side of the dimensional recurrence
relation (4). Note that the factor µL = −1 for Minkovskian metrics and odd number of
loops should be taken into account manually.

LoweringDRR[name,n1,n2,...] returns the right-hand side of the dimensional recurrence
relation (5).

FeynParUF[js[name,θ1,θ2,...]] returns the list {U,F,{x1,x2,...}, where U and F
are the functions entering the parametric representation of the integrals in the given sector,
and x1,x2,... are the parameters.

Learning more One is encouraged to examine the examples that are included in the distribution.
Another good starting point to know more about the functions of the package is to submit a
command ?LiteRed‘*.
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6. Conclusion
In this contribution we have reviewed the LiteRed package performing the IBP reduction
of the multiloop integrals. We have described a new algorithm of detecting the zero sectors
implemented in LiteRed version 1.4.
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