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Abstract. Doubly heavy mesons and baryons provide a good platform for testing pQCD. Two
high efficient generators BCVEGPY and GENXICC for simulating the hadronic production of
the doubly heavy mesons and baryons have been developed in recent years. In this talk, we
present their main idea and their recent progresses. The dominant gluon-gluon fusion mechanism
programmed in those two generators are written based on the improved helicity amplitude
approach, in which the hard scattering amplitude are dealt with directly at the amplitude
level and the numerical efficiency are greatly improved by properly decomposing the Feynman
diagrams and by fully applying the symmetries among them. Moreover, in comparison to the
previous versions, we have updated the programs in order to generate the unweighted meson or
baryon events much more effectively within various simulation environments. The generators
can be conveniently imported into PYTHIA to do further hadronization and decay simulation,
which have already been adopted by several collaborations as LHCb, CMS and etc. to do Bc

and Ξcc simulations.

1. Introduction
Heavy quarkonium or baryon has attracted wide attention due to its special features, which
provides a good platform for studying the perturbative QCD and the associated non-perturbative
physics in the bound state system [1-4]. For example, the Bc meson and the Ξcc baryon can
be a fruitful laboratory for testing various potential models and understanding the weak decay
mechanism for heavy flavors. Systematic studies for the hadronic production of the doubly
heavy quarkonium or baryon at the hadronic colliders as TEVATRON and LHC have been done
in the literature [5-17]. In particular, two generators BCVEGPY and GENXICC have been
completed and developed in recent years [18-24], which can be conveniently implemented into
PYTHIA [25] for simulating the Bc meson and Ξcc baryon events with high efficiency. In the
present paper, we present their main idea and their recent progresses. It is noted that in the
case of productions of double heavy baryons the diquark is remaining in the coloured state. In
this case the interactions with hadronic residue part may decrease the results of calculations due
to disassociation effect [26]. Therefore, it is worth to mention, that the results of calculations of
cross-sections of hadronic production of double heavy baryons are not absolutely identical to the
case of production of Bc meson, and the obtained results for the cross-sections of the baryons
production should be considered with care and may be treated as the estimate of upper bound
of the values of the cross-sections.

There are gluon-gluon fusion mechanism, or the light quark-anti-quark mechanism, or the
extrinsic or intrinsic heavy quark mechanism for the hadronic production of the doubly heavy
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meson or baryon respectively. All of which may provide sizable contribution in specific kinematic
regions. It is noted that in most of the kinematic regions (e.g. large pt region), the dominant
production mechanism is the gluon-gluon fusion mechanism, e.g. for the production of the
(cb̄)-quarkonium, it stands for the production via the process gg → (cb̄)[n] + b + c̄, where [n]
stands for the Fock-states |(cb̄)1[1S0]⟩, |(cb̄)8[1S0]g⟩, |(cb̄)1[3S1]⟩, |(cb̄)8[3S1]g⟩, |(cb̄)1[1P1]⟩ and
|(cb̄)1[3PJ ]⟩ (with J = (1, 2, 3)) within the nonrelativistic QCD [27], respectively. The lowest
Fock state |(cb̄)1[1S0]⟩ corresponds to the usually called Bc meson. The cases for the hadronic
production Ξcc, Ξbc and Ξbb baryons are similar, which can be obtained from the case of Bc

meson production by properly transforming the anti-quark line to be the quark line and by
properly dealing with the color flows [13]. So, in the following, we shall take the gluon-gluon
fusion mechanism for the Bc meson production as an explicit example to explain our calculation
technology and to show how to improve the events simulation efficiency.

2. Gluon-gluon fusion mechanism for the hadronic production
According to the pQCD factorization, the hadronic production cross section is formulated as

dσ =

∫
dx1

∫
dx2 F

g
H1

(x1, µF )× F g
H2

(x2, µF ) dσ̂gg→(cb̄)[n]X(x1, x2, µF , µR), (1)

where F g
H(x, µF ) is the gluon distribution function in hadron H, dσ̂gg→BcX(x1, x2, µF ) is the

cross section for the relevant inclusive production (g + g → (cb̄)[n] + b + c̄). µF and µR stand
for the factorization scale and renormalization scale respectively. The generating of phase space
and its integration can be done with the help of the routines RAMBOS [28] and VEGAS [29].
Then, the most important part left is to deal with the hard scattering amplitude of the process.

At the lowest α4
s order, there are totally 36 Feynman diagrams and hence 36 amplitudes for

the gluon-gluon fusion g + g → (cb̄)[n] + b + c̄. According to the pQCD factorization, each
amplitude can be factorized into two parts, that of perturbative gg → b + b̄ + c + c̄ (all the
quarks are on shell) and that of the nonperturbative c + b̄ → (cb̄)[n] which can be represented
by the universal matrix element for each Fock state. Using the conventional squared amplitude
to deal with the amplitude is a tedious and time-consuming task. To save the time for events
simulation, we can deal with the hard scattering amplitude for gg → b + b̄ + c + c̄ directly at
the amplitude level. In the literature, two ways have been suggested, i.e. the improved trace
technology [30-33] and the helicity amplitude approach [34,35]. In our generators, we adopt an
improved version for the helicity amplitude approach as suggested in Ref.[18] to simplify the
hard scattering amplitude, in which the massive quark lines are dealt with in a much more
compact and effective way.

2.1. A short review of the improved helicity amplitude approach
Main idea of the improved helicity amplitude approach is shown in Fig.(1). According to the
improved helicity amplitude approach [15], we first pick out all the basic spinor lines, which are
constructed by the γ structure of Fermion line, from the whole amplitude, whose remaining parts
include the color factors and the scalar part of the propagators that shall be dealt with separately.
These basic spinor lines can be simplified by changing the involved space-like momenta to be
light-like ones, and then use the relation /k = |k+⟩⟨k+ |+ |k−⟩⟨k−| (k is light-like) to transform
and simplify all the spinor line into expressions of spinor products. This intermediate step can
be done using the standard helicity amplitude approach, cf.Refs.[34,35]. Next, we construct the
basic Feynman diagrams (nine for the gluon-gluon fusion) by proper combination of these basic
spinor lines. Finally, we adopt the symmetries of the gluon-gluon exchanges, the quark line
exchanges to construct all the amplitude of the process.

One subtle point. The authors of Ref.[34] group the Feynman diagrams of the process into
gauge-invariant subsets. To achieve the goal, one have to introduce extra terms into the Feynman

ACAT2013 IOP Publishing
Journal of Physics: Conference Series 523 (2014) 012042 doi:10.1088/1742-6596/523/1/012042

2



Find out all the independent fermion  

Simplify the fermion --Helicity amplitude approach 

Expande all the Feynman amplitude over these bases and 

find out the corresponding coefficients 

Decompose the 

Feynman diagram 

Construct all the Feynman with all the independent 

QED-like Feynman diagrams, with the help of the 

quark-antiquark and gluon-gluon symmetries. 

Unite the same 

type terms as 

much as possible 

Complete the program based on the Feynman 

diagrams, implemented into PYTHIA 

Most effective generator Figure 1. Main idea for the improved
helicity amplitude approach [15].

rules for the three-gluon and four-gluon vertices, i.e.

gfabcT̃
µνδ(P, S,K) = gfabcT

µνδ(P, S,K) + gfabcG
µνδ(P, S,K),

−igṼ λµνδ
abcd (P,Q,K1, k2) = −igV λµνδ

abcd (P,Q,K1, k2)− igGλµνδ
abcd (P,Q,K1, k2), (2)

where P , S and etc. are input momenta for the gluons, T µνδ(P, S,K) and V λµνδ
abcd (P,Q,K1, k2)

are primary Feynman rules

Tµνδ(P, S,K) = (P − S)δgµν + (S −K)µgδν + (K − P )νgδµ

V λµνδ
abcd (P,Q,K1, k2) = fabefcde(g

λνgµδ − gλδgµν) + facefdbe(g
λδgµν − gλµgνδ)

+fadefbce(g
λµgνδ − gλνgµδ), (3)

and Gµνδ(P, S,K) and Gλµνδ
abcd (P,Q,K1, k2) are modified parts

Gµνδ(P, S,K) = (±)
[
PµP νP δ/(P ·K) + SµSνSδ/(S ·K)

]
(4)

Gλµνδ
abcd (P,Q,K1, k2) = −facefbde

Sλ
1S

µ
1S

ν
1S

δ
1

(S1 ·K1)(S1 ·K2)
− fadefbce

Sλ
2S

µ
2S

ν
2S

δ
2

(S2 ·K1)(S2 ·K2)
, (5)

where S1 = P +K1 and S2 = S +K2. Because the modified part of the three gluon vertex is
symmetric on the interchange of P and S, we must be careful to choose the sign of modified
part in every associated diagrams so as to make all subsets be gauge invariant. When adding
all extra terms together they will result in the required zero contribution. Then by choosing
different gauge for each subset, one can obtain a compact result, when all terms of the amplitude
are written according to the helicities of the fermions.

This method is most effective for massless cases. While, for the present massive case (the
quark lines are massive), the question is much more involved. It is noted that the sum of all extra

terms involving Gµνδ(P, S,K) and Gλµνδ
abcd (P,Q,K1, k2) will have non-zero contributions, which

complicates the final results. So in the improved helicity amplitude approach, we adopt a unique
gauge for the whole amplitude. This gauge choice also avoids numerical cancelations between
very large numbers and the numerical results are much more steady when doing the numerical
calculations. This gauge independence can be adopted as one critical point on checking the
rightness of the generator.

Another subtle point. We can further make the amplitude more symmetric by applying a
proper decomposition of the amplitude. As shown by Fig.(2), this is achieved by decomposing
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Figure 2. One typical three-gluon
coupling vertex to be decomposed:
the first two terms are the ‘basic QED-
like’ terms and the ‘remaining’ terms
are expressed by several extra basic
functions from the diagrams involving
the four-gluon vertex.

the terms involving three- and/or four-gluon vertices, into terms without self-interactions of
gluons (i.e. into QED-like amplitudes). More over, it is noted that for the massive quark case,
in addition to the QED-like Feynman diagrams, some more additional QED-like terms need to
be introduced.

Fortunately, for the present subprocess gg → b+ b̄+c+ c̄, these ‘extra’ terms are just parts of
the diagrams with four-gluon vertices; i.e. they are one of the three terms within the amplitude
involving the four-gluon vertex. This shows that the whole amplitude is just the recombination
of all the basic functions already existed in the 36 Feynman amplitudes, which is like a magic.
There are totally nine basic QED-like Feynman diagrams for the present process. Thus, only the
analytic expressions for those ‘basic Feynman diagrams’ need to be put in the program precisely,
while the non-basic ones can be generated by means of linear combination (the coefficients can
be found in Ref.[18]) and/or by properly using the symmetry of all those basic ones.

Relations 

obtained by 

decomposing 

first step 

second step

Figure 3. One example to decom-
pose the Feynman diagram involving
two three-gluon vertices to QED-like
diagrams. Thus, we can obtain one re-
lation among the QED-like diagrams.

As a final subtle point. As shown by Fig.(3), for the Feynman diagrams involving two three-
gluon vertices, there are usually two ways to transform them into the QED-like diagrams; i.e.
in the second step there are two ways to move the gluon either to the upper quark line or to the
lower quark line respectively. Thus, two extra constraints can be found among the nine ‘basic
Feynman diagrams’, the program can be further simplified and become more compact.

2.2. The structure and the efficiency of the BCVEGPY
The flowchart for BCVEGPY, which is implemented into PYTHIA, is shown in Fig.(4).
The BCVEGPY (or GENXICC) is a Fortran programme written in a PYTHIA-compatible
format and is written in a modularization structure, one may apply it to various situations
or experimental environments conveniently. It is noted that the LHE format is a standard
format that is proposed to store process and event information from the matrix-element-based
generators. One can pass these parton-level information to the event generator as PYTHIA for
further simulation. And BCVEGPY will generate a standard LHE data file [36] that contains
useful information of the meson and its accompanying partons, which can be conveniently
imported into PYTHIA to do further hadronization and decay simulation.

The schematic structure for the generator BCVEGPY is shown in Fig.(5). In general, the
generator is systematically constructed in seven modules according to their purpose. Each
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Y 

New GRADE 

I<=NEV 

PYDUMP() 

BEGIN 

BASIC INPUT: NEV,NUMBER,ITMX,VEGASOPEN 

VEGASOPEN 

IT=0 IT=IT+1 

IGRADE==1 

Read existed GRADE 

N 

NUM<=NUMBER 

NUM=0 NUM=NUM+1 

I=0 I=I+1 

PYEVNT 

PYFILL() 

END 

CALL  PHPOINT() 

CALL  AMP2UP() 

CALL  PHPOINT() 

CALL  AMP2UP() 

CALL  PHPOINT() 

CALL  AMP2UP() 

NZERO=0 

GENERAND(X) 

WT=0.0D0;NZERO<10000 

NZERO=NZERO+1 

TOTFUN(X,WT) 

CALL AMP2UP() 

PHPOINT(X,WT) 

N 

Y 

N 

Y 

Y 

EVNTINIT PYINIT UPINIT 

Y 

Y 

N 

N 

N 

WT=0.0D0;NZERO<1 

IT<=ITMX GET THE 

EFFECTIVE PHASE 

SPACE POINTS 

AND THE RELATED 

WEIGHT 

USING  PYTHIA 

SUBROUTINES 

TO GENERATE 

THE FULL 

EVENTS 

IMPROVE THE 

MONTE CARLO 

EFFICIENCY 

Figure 4. The flowchart for the gen-
erator BCVEGPY. The flowchart for
the generator GENXICC is similar.

Main code directory

pybook/
system/

phase/
generate/

data/

pwave/
setparameter/

swave/

................. generating allowed phase space
............. generating events

................ recording running information

................ using PYBOOK to record data
................. calculating S−wave square of amplitude
................. calculating P−wave square of amplitude

.................... all the obtained data files are put here
...... generating short notation for parameters

Figure 5. The schematic structure
for the generator BCVEGPY. The
schematic structure for the generator
GENXICC is similar.

module contains necessary files to fulfill the specific tasks for generating events. The BCVEGPY
is dominated by two blocks, i.e. the vegas block (in module phase) and the event block (in
module generate). The vegas block is to generate the importance sampling function. The
event block is to generate events by using PYTHIA, in a way that all the mentioned processes
are implemented into PYTHIA as its external processes. This is achieved by properly setting
the two PYTHIA subroutines UPINIT and UPEVNT.

Here we modify the vegas block not only to generate the sampling importance function
but also to store an upper bound of the value of the cross sections in each cell [37-40]; i.e.
an improved and more effective method to generate unweighted events has been programmed
[21,24] based on the MINT package [40]. The importance sampling function is used to increase
the simulation efficiency, while the upper bound value will be used to generate unweighted event
if the user want to do the experimental analysis and further simulation. The upper bound
value in each cell is an upper bound for the cross sections and also equals a multidimensional
stepwise function, according to which it is easy to generate phase-space points. By using this
new hit-and-miss technique, one can generate the points according to the original distribution.
Moreover, in doing the initialization, we will call VEGAS twice to generate the upper bound
grid XMAX and also a more precise importance sampling function. In VEGAS the integral
together with its numerical error are related to the sampling numbers ncall and the iteration
times itmx. So, to generate full events, we suggest the user to do a test running first so as to find
an effective and time-saving parameters for VEGAS. Finally, one can generate events by calling
the UPEVNT subroutine according to the probability proportional to the integrand. As we have
shown that such treatment can largely improve the generation efficiency without affecting the
total cross-section of the process [21,24].
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3. Summary
The coming LHC experiment shall provide a better platform to check all the theoretical
predications and to learn Bc, Ξcc, Ξbc and Ξbb properties in more detail. Recently some new
measurements on Bc meson have been done by LHCb and CDF collaborations [41-45], in which
BCVEGPY has been adopted for data analysis. The very recent measurement of Xi+cc events by
LHCb collaboration has adopted GENXICC to do analysis [46]. Due to their high running
efficiency (because of the using of improved helicity amplitude approach), BCVEGPY and
GENXICC are very useful for Monte Carlo simulation and also for theoretical studies. At
the present, they have been adopted by most of the collaborations at LHC and TEVATRON,
such as the LHCb, CMS, ATLAS and etc.. The suggesting future super Z factory, GIGAZ
program, LEP3, and etc., shall also provide good platforms for doubly heavy meson and baryon
productions, cf. Refs.[47-49].
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