
Journal of Physics: Conference
Series

OPEN ACCESS

The Effect of Flashcache and Bcache on I/O
Performance
To cite this article: Christopher Hollowell et al 2014 J. Phys.: Conf. Ser. 513 062023

View the article online for updates and enhancements.

You may also like
Auto-commissioning of a Monte Carlo
electron beam model with application to
photon MLC shaped electron fields
M K Fix, D Frei, S Mueller et al.

-

Effects of Chemical-Electrical and
Mechanical Parameters on Electrical-
induced Chemical Mechanical Polishing of
GaN
Zhao Ding, Shiwei Niu, Qingyu Yao et al.

-

Performance analysis of three-
dimensional-triple-level cell and two-
dimensional-multi-level cell NAND flash
hybrid solid-state drives
Yukiya Sakaki, Tomoaki Yamada, Chihiro
Matsui et al.

-

This content was downloaded from IP address 18.119.160.154 on 24/04/2024 at 12:55

https://doi.org/10.1088/1742-6596/513/6/062023
https://iopscience.iop.org/article/10.1088/1361-6560/acb755
https://iopscience.iop.org/article/10.1088/1361-6560/acb755
https://iopscience.iop.org/article/10.1088/1361-6560/acb755
https://iopscience.iop.org/article/10.1149/2162-8777/ac4215
https://iopscience.iop.org/article/10.1149/2162-8777/ac4215
https://iopscience.iop.org/article/10.1149/2162-8777/ac4215
https://iopscience.iop.org/article/10.1149/2162-8777/ac4215
https://iopscience.iop.org/article/10.7567/JJAP.57.04FE03
https://iopscience.iop.org/article/10.7567/JJAP.57.04FE03
https://iopscience.iop.org/article/10.7567/JJAP.57.04FE03
https://iopscience.iop.org/article/10.7567/JJAP.57.04FE03
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvzIt9sITWmv53XP04sbWb5OUrSRY8QsU3BGkJZl_YQLHVFmWgY6-BgvXnFrSwL44w2C9ePm4X-eIfsY625xH2pmBchNIMBrcCa988E0pbzYeEDh-CGbyUn6MW47zMisgKHjWXv0iGfgZbsdVB4qucfYGqlTyrVa0cPdFaIGmRk5E2QCtFiBSXj75DUUT3LHkwYvk62CQ9T8KW2FkdRt9EVF_XDeywoib9nasTQPMwiqvw7CI2NudBoOevCOvzevP8cNbMTNpbaW-3NBh5qcHQrFZ0yT8_1yP6XloHH4Ncu_QY-bLJWBl6rGI7XSXgkRwxbQHvwKnDG_S8gYQLT3D0&sig=Cg0ArKJSzJ9eSDk2Z-Oi&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

The Effect of Flashcache and Bcache on I/O

Performance

Christopher Hollowell1, Richard Hogue1, Jason Smith1, William
Strecker-Kellogg1, Antonio Wong1, Alexandr Zaytsev1

1Brookhaven National Laboratory, Upton, NY 11973, USA

E-mail: hollowec@bnl.gov, rhogue@bnl.gov, smithj4@bnl.gov, willsk@bnl.gov,

tony@bnl.gov, alezayt@bnl.gov

Abstract. Solid state drives (SSDs) provide significant improvements in random I/O
performance over traditional rotating SATA and SAS drives. While the cost of SSDs has been
steadily declining over the past few years, high density SSDs continue to remain prohibitively
expensive when compared to traditional drives. Currently, 1 TB SSDs generally cost more than
USD $1,000, while 1 TB SATA drives typically retail for under USD $100. With ever-increasing
x86 64 server CPU core counts, and therefore job slot counts, local scratch space density and
random I/O performance have become even more important for HEP/NP applications.

Flashcache and Bcache are Linux kernel modules which implement caching of SATA/SAS
hard drive data on SSDs, effectively allowing one to create hybrid SSD drives using software.
In this paper, we discuss our experience with Flashcache and Bcache, and the effects of this
software on local scratch storage performance.

1. Introduction
Over the past few years, x86 64 server processor core counts have continued to increase. Sandy
Bridge processors used in servers today already commonly provide 16 logical cores per physical
CPU. In the not so distant future, Haswell-based server CPUs are expected to provide up to
40 logical cores in a single physical package [1]. In the traditional High Energy Physics and
Nuclear Physics (HEP/NP) batch processing model, one job slot is allocated for each logical
core in a system. This has lead to a constant increase in the number of jobs per host, and
therefore in demand for local scratch and remote storage I/O performance and density. There has
been some success in the development of multithreaded HEP/NP batch processing applications
and frameworks, which may help alleviate increasing random I/O performance requirements,
potentially through the use of scatter/gather I/O models [2]. However, as of the time of writing,
multithreaded batch processing has not yet been widely adopted by the experiments utilizing
our computing center, the RHIC/ATLAS Computing Facility (RACF) at Brookhaven National
Laboratory (BNL).

The current method we’ve adopted for improving scratch I/O performance on our worker
nodes has been to populate these systems with multiple commodity drives, and combine them
into software RAID0 arrays. This can be somewhat expensive, however, as it requires that many
drives be purchased for each host. Furthermore, the increase in core density is outpacing the
increase in available spindle count in typical worker node server hardware, and therefore, this
solution may not scale at some point in the near future.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 062023 doi:10.1088/1742-6596/513/6/062023

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

Table 1. Hybrid device operations.
Operation Flashcache Bcache
Insert Module

modprobe flashcache
modprobe bcache

Create Device
flashcache_create -p back fc1
/dev/SSD /dev/HDD

make-bcache -B /dev/SSD
make-bcache -C /dev/HDD
cd /sys/fs/bcache
echo /dev/SSD > register
echo /dev/HDD > register
cd /sys/block/bcache0/bcache
echo CACHESET_UUID > attach

Load Existing
flashcache_load /dev/SSD cd /sys/fs/bcache

echo /dev/SSD > register
echo /dev/HDD > register

Format Device
mkfs.ext4 /dev/mapper/fc1 mkfs.ext4 /dev/bcache0

SSDs provide excellent random I/O performance characteristics, and we considered adopting
them for scratch storage in our worker nodes. However, they are extremely expensive for the
capacities we require. For instance, as of September 2013, 1 TB SSD drives typically cost near
or above USD $1,000, with enterprise models exceeding USD $2,500. In contrast, a commodity 1
TB SATA drive retails for less than USD $100. Therefore, we decided to look into the possibility
of using hybrid hard drives, which have a flash memory cache in front of traditional rotating
media. While Seagate offers such products close to the price of traditional SATA drives, they
have not yet been validated for use in servers offered by large scale manufacturers such as Dell.
Therefore, this technology was not a viable option for us.

Hybrid devices can also be implemented in software, and there are currently a number of
Linux kernel drivers available which implement this functionality, two of which are Flashcache
and Bcache. We tested both of these driver implementations to determine if they could be used
to eliminate the need for multi-spindle RAID0 array scratch storage on worker nodes, or increase
the performance of these arrays.

2. Flashcache and Bcache
While Flashcache and Bcache provide similar functionality, there are a number of important
differences between the two projects. Bcache has been integrated into the Linux kernel as stable
software since the 3.10 release. Flashcache, on the other hand, is available only as separate
software, which is compiled as a module outside of the kernel source. Whereas Flashcache is
controlled via the kernel’s sysctl interface, Bcache uses Sysfs (/sys) for configuration parameter
modification. Finally, Bcache utilizes a btree cache structure [3], while Flashcache’s cache is
structured as a set associative hash [4]. The steps we used to setup and configure our Flashcache
and Bcache devices are available in Table 1.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 062023 doi:10.1088/1742-6596/513/6/062023

2

Table 2. Hybrid device parameters.
Flashcache Bcache
dev.flashcache.SSD+HDD.reclaim policy = 0 (FIFO) cache replacement policy = ”lru”
dev.flashcache.SSD+HDD.fallow delay = 900 writeback delay = 30
dev.flashcache.SSD+HDD.skip seq thresh kb = 0 sequential cutoff = 0
Writeback cache type set at creation time cache mode = ”writeback”

There are number of configuration options available for both drivers. Most importantly, all
of our tests were performed with the Flashcache and Bcache device SSD caches in writeback
mode. A listing of some additional relevant parameter settings for our tests are present in Table
2. The number of available options is quite large: testing variations on each was not possible
given our time constraints. For simplicity, in general, configuration defaults were untouched,
and only altered when it was believed that significant performance gains could be achieved, or
when such modifications were recommended in documentation.

3. Hardware and Operating System Configuration
Details on the hardware configuration used during our benchmarking is available in Table 3.
64-bit Scientific Linux (SL) 6.4 was used as the operating system in all tests. However, the use
of a custom configured/compiled vanilla upstream 3.11.1 kernel was necessary during Bcache
testing. This was because it was not possible (at least not without heavy modification) to extract
the Bcache source from the upstream 3.x kernel tree, and integrate it into the stock SL6 2.6.32
kernel source.

For the Flashcache and Bcache benchmarks, two hardware configurations were tested: one
with a single SSD cache in front of a single SATA drive, and one with a single SSD cache fronting
a 7-spindle software RAID0 array. For comparison, the same benchmarks were run on a single
SSD, a single SATA drive, and an 8-spindle software RAID0 device. Due to the fact that SSDs
are not subject to the I/O timings required for efficient access to rotating media, the “deadline”
or “noop” kernel I/O schedulers should be used with these drives. During our tests, we set the
kernel I/O scheduler to “deadline” for the SSD, and TRIM was not enabled at mount time.

Only one SSD model was tested in our benchmarks due to time and available hardware
constraints. It’s possible that better performance could have been obtained from Flashcache
and Bcache through the use of a higher performing SSD, or multiples thereof. However,
the performance of the SSD utilized in this study was in line with the results of other SSD
makes/models we’ve benchmarked in the past.

4. Benchmarks
For performance testing, we utilized both Bonnie++ [5] and Iozone [6]. When these benchmarks
were run, we were careful to ensure that filesize was set larger than total system memory
size. Bonnie++ only tests sequential I/O performance, but it supports a synchronized
multiprocess/parallel execution mode. In this way, the benchmark can be used to create a
random workload, albeit not heavily randomized due to kernel I/O buffering and scheduling
optimizations that attempt to sequentialize all I/O to disk. In particular, this benchmark, with
multiple processes performing sequential I/O, is likely a good model for HEP/NP batch process
scratch access. This is especially the case at RACF where some of the experiments we support
stream input/output files to/from local scratch storage at the beginning and end of their batch
jobs.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 062023 doi:10.1088/1742-6596/513/6/062023

3

Table 3. Evaluation hardware configuration.
Component Single SATA & SSD Tests SW RAID0 Tests
Server Dell PowerEdge R410 Dell PowerEdge R620
CPU 2 6-core Xeon X5660@2.80 GHz 2 8-core Xeon E5-2660@2.20

GHz
Total Logical Cores 24 32
Memory 48 GB DDR3 1333 MHz 48 GB DDR3 1600 Mhz
Disk Controller SAS 6/IR PERC H310
Hard Drives 1 Seagate ST32000644NS 3.5” 2

TB
8 [7 for Flashcache/Bcache] Sea-
gate ST9500620NS 2.5” 500 GB

HDD Attributes 7200 RPM SATA 3.0 Gbps 7200 RPM SATA 3.0 Gbps
SSD Drive Samsung SM825 2.5” 200 GB Samsung SM825 2.5” 200 GB
SSD Attributes Enterprise eMLC SATA 3.0 Gbps Enterprise eMLC SATA 3.0 Gbps

For this study, we ran Bonnie++ as both a single process for sequential I/O testing, and as
24 synchronized processes in parallel for random I/O testing. Iozone can run in multithreaded
(throughput mode), or single-threaded modes, and performs several I/O tests, including both
sequential and random. Only single-threaded Iozone tests were run, and we were primarily
interested in the random I/O benchmark results. Iozone was run in “automatic mode,” where
record size was varied multiple times during execution. Bonnie++ was run with only two record
sizes: 8 KB, and single byte (character).

Figure 1. Iozone random read performance.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 062023 doi:10.1088/1742-6596/513/6/062023

4

As the parallel Bonnie++ results were most relevant to our use case, the Bonnie++
benchmarks were run with both clean and dirty Flashcache and Bcache SSD caches. Dirty
test results were obtained by running the benchmark a number of times in succession before the
final run, where results were collected. Clean tests were first runs of the benchmark on a newly
created device and filesystem. The Iozone results presented can be considered dirty, since the
benchmark was run multiple times with varying filesizes before the final 64 GB file tests.

Figure 2. Iozone random write performance.

5. Results
While the single SSD provided excellent random I/O benchmark results, particularly for
small record sizes, it did not provide the performance of the multi-spindle software RAID0
configuration for larger records. The software RAID0 configuration provided roughly double
the random I/O performance, when compared to the SSD for large records, and for parallel
workloads. However, it consisted of 8 times the number of drives. As expected, single SSD
random I/O performance was significantly better than a single SATA drive.

Flashcache and Bcache with an SSD cache generally augmented the I/O performance of a
single SATA disk for files that fit within the cache. Flashcache usually yielded better random
write performance in the single disk configuration, while Bcache provided for better overall
random read performance. Smaller gains, or performance losses were typically seen when the
cache was preloaded with dirty data during Bonnie++ testing.

Fronting a 7-spindle software RAID0 array with a single SSD cache via Flashcache and Bcache
generally reduced the performance of the array, when compared to an 8-spindle RAID0 device
without an SSD cache. It’s possible that Flashcache and Bcache may improve the performance
of RAID5/6 devices. However, we did not test these RAID levels, as we were mainly interested in
the performance of local scratch storage, where they are not commonly used. Bcache backed by a

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 062023 doi:10.1088/1742-6596/513/6/062023

5

7-spindle software RAID0 array came close to the performance of the 8-spindle cacheless software
RAID0 device, and in some tests surpassed it. This is likely due to Bcache’s monitoring of SSD
congestion, and its default automatic cache bypass capability during periods of high latency
SSD access.

Figure 3. Bonnie++ parallel sequential read/write performance - generates a randomized
workload.

6. Conclusions
We tested Bcache and Flashcache, two software hybrid device implementations for the Linux
kernel, to determine if they could be used to address the continued increase in I/O demands
from HEP/NP jobs running on worker nodes with progressively larger core/slot counts. We
were primarily interested in increasing local worker node scratch storage performance, and/or
reducing the cost of this storage. While it appears that Flashcache and Bcache can be used
to improve the performance of a single SATA drive, these kernel drivers, with a single SSD
cache, cannot provide the overall performance of multi-spindle software RAID0 devices, or be
used to greatly improve the performance of these arrays. Therefore, while Flashcache and
Bcache may be well suited for use in situations where sets of relatively small files are repeatedly
and randomly accessed on a single drive or slow redundant storage, this software does not
appear to be particularly well suited for use in HEP/NP worker node local scratch storage
environments. Until the cost of high capacity SSDs significantly drops, or the I/O performance
and/or density requirements for HEP/NP jobs is reduced (i.e. through the widespread adoption
of multithreaded batch processing models), the use of software RAID0 arrays consisting of many
traditional rotating drives appears to be the best option for local scratch storage.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 062023 doi:10.1088/1742-6596/513/6/062023

6

Figure 4. Bonnie++ sequential read/write performance.

References
[1] Haswell Microarchitecture: http://en.wikipedia.org/wiki/Haswell (microarchitecture)
[2] van Gemmeren P, et al. 2012 I/O Strategies for Multicore Processing in ATLAS 2012 J. Phys.: Conf. Ser.

396 022054
[3] Bcache: http://bcache.evilpiepirate.org/
[4] Flashcache: https://github.com/facebook/flashcache/
[5] Bonnie++: http://www.coker.com.au/bonnie++/
[6] Iozone: http://www.iozone.org/

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 062023 doi:10.1088/1742-6596/513/6/062023

7

