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Abstract. Given the experimental precision in condensed matter physics – positions are
measured with errors of less than 0.1pm, energies with about 0.1meV, and temperature levels
are below 20mK – it can be inferred that standard quantum mechanics, with its inherent
uncertainties, is a model at the end of its natural lifetime. In this presentation I explore
the elements of a future deterministic framework based on the synthesis of wave mechanics and
density functional theory at the single-electron level.

1. Introduction
The paper describes research presented at the EmQM 13 conference. It gives an overview of
work on quantum mechanics through about fifteen years, from the first paper on extended
electrons and photons published in 1998 [1], to the last paper on quantum nonlocality and Bell-
type experiments in 2012 [2]. A final section contains the first steps towards a density functional
theory of atomic nuclei, presented for the first time at the conference in Vienna. My publications
on quantum mechanics possess a gap from about 2002 to 2010. This was due to the realization
that I could not account for a simple fact: I could not explain, how the electron changes its
wavelength, when it changes its velocity. I felt at the time that not understanding this simple
fact probably meant that I could not understand the electron. Hence I only continued the
development of this framework after, prompted by a student of mine, I had found a solution
which seemed to make sense. For that I have to thank this particular student. I also have to
thank Gerhard Grössing and Jan Walleczek for organizing this great conference, and the Fetzer
Franklin Fund for very generous financial support.

I think we can say today that we actually do understand quantum mechanics. Maybe not
in the last details, and maybe not in its full depth, but in the basic physics which it describes,
and the deep flaws buried within its seemingly indisputable axioms and theorems. In that, we
differ from Richard Feynman, who famously thought that nobody could actually understand it.
However, this was said before two of the most important inventions for science in the twentieth
century became available to researchers: high-performance computers, and scanning probe
microscopes. Computers changed the way science is conducted, since they allow for exquisite
experimental control and an extensive numerical analysis of all experiments. This, in turn, means
that successful theory and successful quantitative predictions, based on local quantities, make it
increasingly implausible, that processes exist, which are operating outside space and time. Then,
the solution to the often paradoxical theoretical predictions and sometimes incomprehensible
experimental outcomes can only lie in the rebuilding of a model in microphysics which is both,
rooted in space and time, and which allows for a description of single events at the atomic scale.
This paper aims at delivering the first building blocks of such a comprehensive model.
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Figure 1. Top frames, clockwise, development of scanning probe microscopy over the last 30
years. Au-terraces 1982[4], Au-atoms 1987[5], Atomic species 1993[6], electron waves 1993[7],
electron-spin 1998[8], atomic vibrations 1999[9], spin-flip excitations 2007[11], forces on single
atoms 2008[3].

Computers and scanning probe instruments make it possible to measure and analyze single
processes on individual atoms and even electrons. Today we can measure and simulate the
forces necessary to push one atom across a smooth metal surface [3], vibrations created by
single electrons impinging on molecules [9], torques on molecules created by ruptures of single
molecular bonds [10], or single spin-flip excitations on individual atoms [11]. See Fig. 1 for the
development of experiments over the last thirty years. Distances, in these experiments, can be
measured with an accuracy of 0.05 pm [12], which is about 1/4000th of an atomic diameter;
energies with a precision of 0.1meV, which is about 1/20000th of the energy of a chemical bond
[11]. Given these successes and this accuracy, of which physicists could only dream at the time
of Einstein, Schrödinger, Heisenberg, or Dirac, it would be intellectually deeply unsatisfying if
we were today still limited to the somewhat crude theoretical framework of standard quantum
mechanics, developed at the beginning of the last century.

2. The main problem
The main problem faced by theorists today is the precision of experiments at the atomic scale,
because it exceeds by far the limit encoded in the uncertainty relations. This has been the
subject of debate for some time now, following the publication of Ozawa’s paper in 1988 [13],
which demonstrated that the limit can be broken by certain measurements. An even larger
violation can be observed in measurements of scanning probe instruments [14]. If the instrument
measures, via its tunneling current, the variation of the electron density across a surface, then a
statistical analysis of such a measurement is straightforward. In the conventional model electrons
are assumed to be point particles. The same assumption is made in quantum mechanics, when
the formalism is introduced via Hamiltonian mechanics and Poisson brackets. It is also the
conventional wisdom in high energy collision experiments, where one finds that the radius of
the electron should be less than 10−18m. If this is correct, then the density is a statistical
quantity derived from the probability of a point-like electron to be found at a certain location.
This has two consequences: (i) A measurement of a certain distance with a certain precision
for a particular point on the surface can only be distinguished from the measurement at a
neighboring point if the standard deviation is lower than a certain value. (ii) A certain energy
limit allows only a certain lower limit for the standard deviation in these measurements. One
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can now show quite easily [14] that the standard deviation at realistic energy limits (in case
of a silver surface the band energy) is about two orders of magnitude larger than the possible
value for state-of-the-art measurements today. The allowed limit for the standard deviation
in the experiments is about 3pm, while the standard deviation from the band energy limit is
about 300pm. The consequence for the standard framework of quantum mechanics is quite
devastating: the uncertainty principle, and by association the whole framework of operator
mechanics, becomes untenable, because it is contradicted by experiments. It is precisely this
contradiction, which has been claimed by theoretical physicists to be impossible. It also has one
consequence, which can be seen as the one principle of the following: The density of electron
charge is a real physical quantity. It has the same ontological status as electromagnetic fields
or macroscopic mass or charge distributions. The only difference, and the origin of many of the
complications arising in atomic scale physics is that the density not only interacts with external
fields, but it also interacts with an electron’s internal spin density.

The theoretical framework combines two separate models. Both of them are due to physicists
born in Vienna, so the location of a workshop on emergent quantum mechanics, from my
personal perspective, could not have been better chosen. The first of these physicists is Erwin
Schrödinger, born in Vienna in 1887, the second one is Walter Kohn, born in Vienna in 1923. The
fundamental statements, underlying these two separate models, are the following: (i) A system is
fully described by its wavefunction (Schrödinger). (ii) A system is fully described by its density
of electron charge (Kohn). I have been asked, at this workshop, whether the violation of the
uncertainty relations could be accounted for by a reduced limit of the constant. Such a solution
disregards the ultimate origin of the uncertainty relations. They are based, conceptually, on the
assumption that electrons are point particles (this is the link to classical mechanics and Poisson
brackets), and the obligation to account for wave properties of electrons. If wave properties are
real, then there will be no theoretical limit to the precision in their description.

3. Wavefunctions and charge density
If the density of electron charge is a real physical property, then a common framework must
be developed, which allows to map the density onto wavefunctions in the Schrödinger theory.
Wavefunctions famously do not have physical reality in the conventional model. However, their
square does, according to the Born rule. Here, we want to demonstrate that this is correct
to some extent also within the new model, but with one important limitation: even though
wavefunctions do not have the same reality as mass or spin densities, they can be assembled
from these two - physically real - properties.

3.1. Density and energy
Electrons play a key role in modern physics. Indeed, one could argue that all of physical sciences
at the atomic and molecular level, Physics, Chemistry, and Biology is concerned with only one
topic: the behavior and properties of electrons. This is also reflected in the celebrated theorem
of Walter Kohn: all properties of a physical system, composed of atoms, are defined once the
distribution of electron charge within the system is determined [15]. The solution to the problem
of electron density distribution is formulated in density functional theory in a Schrödinger-type
equation. The spin density is, in this framework, denoted as an isotropic spin-up or spin-down
component of the total charge density, the energy related to this spin-density is computed with
the help of Pauli-type equations.

However, the framework does not provide physical insights into either spin-densities at the
single electron level, or how spin-densities will change in external magnetic fields. What was
missing, so far, was a clear connection between the density of electron charge, on the one
hand, and the spin density on the other hand. A connection, which should explain the physical
origins of wavefunctions in the standard model. It should also explain, how density distributions
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may change as a consequence of changes to the electron velocity, thus underpinning the wave
properties of electrons, found in all experiments. This poses a problem for both, standard
quantum theory and density functional theory, because in both cases free electrons are described
by plane waves:

ψ(r) =
1√
V

exp (ikr) (1)

In this case the Born rule gives a constant value for the probability density, for the mass density
and for the charge density: free electrons, then, do not have any distinctive property related to
their velocity.

It turns out to be surprisingly simple to construct a more physical model. Once it is accepted
that electrons must be extended, the wave features must be part of the density distributions of
free electrons themselves. In this case the density of charge must also be wavelike. Assigning a
wave-like behavior to the density of electron mass moving in z-direction by:

ρ(z, t) =
ρ0
2

[
1 + cos

(
4π

λ
z − 4πνt

)]
(2)

where ρ0 is the inertial mass density of the electron, and λ and ν depend on the momentum and
frequency according to the de Broglie and Planck rules. At zero frequency infinite wavelength,
describing an electron at rest, the mass density is equal to the inertial mass density. However,
if the electron moves, then the density is periodic in z and t. This requires the existence of
an additional energy reservoir to account for the variation in kinetic energy density. We next
introduce the spin density as the geometric product of two field vectors, E and H, which are
perpendicular to the direction of motion. These fields are:

E(z, t) = e1E0 sin

(
2π

λ
z − 2πνt

)
H(z, t) = e2H0 sin

(
2π

λ
z − 2πνt

)
(3)

Spin, in this picture, is the geometric product of the two vector components. It is thus a chiral
(and for the free electron imaginary) field vector, which is either parallel or anti-parallel to the
direction of motion. The total energy density is constant and equal to the inertial energy density
if we impose a condition on the spin amplitude [16]:

Ekin(z, t) =
1

2
ρ0v

2
el cos2

(
2π

λ
z − 2πνt

)
Espin(z, t) =

(
1

2
ε0E

2
0 +

1

2
µ0H

2
0

)
sin2

(
2π

λ
z − 2πνt

)
(

1

2
ε0E

2
0 +

1

2
µ0H

2
0

)
=:

1

2
ρ0v

2
el (4)

⇒ Etot = Ekin(z, t) + Espin(z, t) =
1

2
ρ0v

2
el = constant

It should be noted that not only the frequency, but also the intensity of the spin component
depends on the velocity of the electron. This is in marked contrast to classical electrodynamics,
where the energy of a field only depends on the intensity but not on the frequency. Here,
it establishes a link between the quantum behavior of electrons and the quantum behavior
of electromagnetic fields. This link gives a much more precise explanation for the validity of
Planck’s derivation of black body radiation. If every electromagnetic field, due to emission
or absorption of energy by electrons, must follow the same characteristic, then every energy
exchange must also be proportional to the frequency of the field. Then Planck’s assumption,
that E = hν is nothing but a statement of this fact. However, that also the intensity follows the

EmQM13: Emergent Quantum Mechanics 2013 IOP Publishing
Journal of Physics: Conference Series 504 (2014) 012014 doi:10.1088/1742-6596/504/1/012014

4



same rule, has been unknown so far. In our view this could be the fundamental principle for a
general framework of a non-relativistic quantum electrodynamics to be developed in the future.
Electrostatic repulsion of such an extended electron has to be accounted for, as it is in density
functional theory (DFT), by a negative cohesive energy of the electron of -8.16eV. In DFT this
energy component is known as the self-interaction correction.

3.2. Wavefunctions
It is straightforward to assemble wavefunctions from mass and spin density components,
following this route. Wavefunctions are in our framework multivectors containing the even
elements of geometric algebra in three dimensional space [17]. The even elements are real
numbers and bivectors (product of two vectors), the 4π symmetry, which is the basis of Fermi
statistics in the conventional framework, follows from the symmetry properties of multivectors
under rotations in space. The real part ψm of a general wavefunction can be written as a scalar
part, equal to the square root of the number density:

ψm = ρ1/2 = ρ
1/2
0 cos

(
2π

λ
z − 2πνt

)
(5)

In geometric algebra, this is the scalar component of a general multivector. The bivector
component ψs is the square root of the spin component, times the unit vector in the direction
of electron propagation, times the imaginary unit. It is thus:

ψs = ie3S
1/2 = ie3S

1/2
0 sin

(
2π

λ
z − 2πνt

)
(6)

The scalar component and the bivector component for an electron are equal to the inertial
number density:

ρ0 = S0 ⇒ ρ+ S = ρ0 = constant (7)

The same result can be reached by applying the Born rule, for the wavefunction defined as:

ψ = ρ1/2 + ie3S
1/2 ψ† = ρ1/2 − ie3S1/2 (8)

ψ†ψ = ρ+ S = ρ0 = constant

The difference to the conventional formulation is that the wavefunction is a multivector, not a
complex scalar. It also makes the spin component a chiral vector, which is important for the
understanding of spin measurements.

Formally, we can recover the standard equations of wave mechanics, if we define the
Schrödinger wavefunction as a complex scalar, retaining the direction of the spin component
as a hidden variable. The wavefunction for a free electron then reads:

ψS = ρ1/2 + iS1/2 = ρ
1/2
0 exp

[
i

(
2π

λ
z − 2πνt

)]
(9)

In the conventional framework the dependency of the wavefunction and the Schrödinger equation
on external scalar or vector potentials is usually justified with arguments from classical mechanics
and energy conservation. In our approach, the justification is the changed frequency and
wavevector of electrons if they are subject to external fields. If we assume that the frequency of
the electron varies from the value inferred from the de Broglie and Planck relations:

ih̄
∂ψS
∂t

= hνψ 6= − h̄2

2m
∇2ψS =

p2

2m
ψS , (10)
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then the difference, which is observed in the photoelectric effect, can be accounted for by an
additional term in the equation which is linear with the measured scalar potential. Then:

ih̄
∂ψS
∂t

= − h̄2

2m
∇2ψS + V ψS (11)

The second situation, where this can be the case, observed for example in Aharonov-Bohm
effects, is when the wavelength does not comply with the wavelength inferred from the frequency
and the Planck and de Broglie relations. In this case one can account for the observation by
including the vector potential in the differential term of the equation to arrive at the general
equation [16]:

ih̄
∂ψS
∂t

=
1

2m
(ih̄∇− eA)2 ψS + V ψS (12)

The important difference to standard wave mechanics is that all these effects occur at a local
level and can therefore be analyzed locally.

3.3. Many-electron systems
In a many-electron system motion of electrons is correlated throughout the system and mediated
by crystal fields within the material. If the spin component in general is a bivector, and if it is
subject to interactions with other electrons in the system, then the general, scalar Schrödinger
equation will not describe the whole physics of the system. Simply accounting for all interactions
by a scalar effective potential veff would recover the Kohn-Sham equations of DFT, if exchange
and correlation were included. It would do so, however, for both, density components and spin
components, since:(

− h̄2

2m
∇2 + veff

)(
ρ1/2 + ie3S

1/2
)

= µ
(
ρ1/2 + ie3S

1/2
)

(
− h̄2

2m
∇2 + veff − µ

)
ρ1/2 =

(
− h̄2

2m
∇2 + veff − µ

)
S1/2 = 0 (13)

In this case the solutions of the equation, single Kohn-Sham states, would not lend themselves
to a local analysis of physical events, and would not include an independent spin component.
We therefore propose a different framework for a many electron system, which scales linearly
with the number of electrons and remains local. Such a model can be achieved by including a
bivector potential into a generalized Schrödinger equation in the following way:(

− h̄2

2m
∇2 + veff + ievvb

)(
ρ1/2 + iesS

1/2
)

= µ
(
ρ1/2 + iesS

1/2
)

(14)

where we have changed the spin component to describe a general spin direction es. The geometric
product of two vectors is the sum of a real scalar and an imaginary vector: eves = ev ·es−iev×es.
The equation of motion for a general many-electron system then reads:(

− h̄2

2m
∇2 + veff − µ

)
ρ1/2 = ev · esvbS1/2

(
− h̄2

2m
∇2 + veff − µ

)
esS

1/2 + evvbρ
1/2 = −ev × esvbS

1/2 (15)

If ev = 0, we recover Eq. (13). As inspection shows, the coupled equations only have a solution
if the direction of the bivector potential is equal to the direction of spin (ev = es), which reduces
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the problem to: (
− h̄2

2m
∇2 + veff − µ

)(
ρ1/2 − S1/2

)
= vb

(
ρ1/2 + S1/2

)
(16)

For vb = 0 and ρ̃1/2 = ρ1/2 − S1/2 this equation is identical to the Levy-Perdew-Sahni equation
derived for orbital free DFT in the 1980s [18].(

− h̄2

2m
∇2 + veff − µ

)
ρ̃1/2 = 0 (17)

One can reduce the expression to the conventional Schrödinger equation for the hydrogen atom
by setting veff = vn, the Coulomb potential of the central nucleus. The equation then has two
groundstate solutions, both radially symmetric:

ρ1/2 = ±C
2
e−αr S1/2 = ±C

2
e−αr (18)

where C is a constant, and α is the inverse Bohr radius. The vector es is the radial unit vector
er and the two spin directions are inward and outward. The same solution will apply to all
s-like charge distributions, also, therefore, to the valence electron of silver (see the discussion of
Stern-Gerlach experiments below).

The great advantage of the formulation is the simplicity and the reduced number of variables.
Both, ρ and S are scalar variables. In addition, we have to find the directions of the unit vectors,
es = ev for every point of the system. This reduces the time independent problem to a problem
of finding five scalar components in real space. Compared to the standard formulation of many-
body physics, where one has to find a wavefunction of 3N variables, where N is the number of
electrons, or to standard DFT, which scales cubic with N , the approach is much simpler.

However, the effective potential veff and the bivector potential vb in this model are generally
not known and have to be determined for every system. Judging from the development of
standard DFT this process will probably take at least ten years of development before reliable
methods can be routinely used in simulations. But we think, that this method and this approach
to many-body physics will also be an element of physics in the 21st century.

4. Experiments
As stated in the introduction, we consider the fact that quantum mechanics does not allow for
a detailed analysis of single events a major drawback of the theory. However, a theoretically
more advanced model will have to pass the test that it can actually deliver these insights. This
value statement, i.e. that a theoretical framework is superior not because it obtains higher
precision in the numerical predictions, but it is superior because it provides causal insight into
physical processes, is somewhat alien to the current debate about quantum mechanics. The tacit
agreement seems to be that no theory can provide such an insight. This is one of the fundamental
assumptions of the Copenhagen school. There, it is stated that no theoretical model can be more
than a coherent framework for obtaining numbers in experimental trials. But we do actually
not know that this is true, because the assumption that it is true contains an assumption about
reality. The assumption that reality cannot in principle be subjected to an analysis in terms of
cause and effect in physical processes. The argument thus is not even logically consistent with
its own believe system. Here, we want to show that the analysis of single events in terms of
cause and effect is possible also at the atomic scale. This, we think, demonstrates more than
anything else the problems of the standard framework.
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4.1. Acceleration of electrons
We are quite used to the fact that the wavelength of an electron is inverse proportional to its
momentum. It is thus also quite normal to write a wavefunction of a particular free electron,
which contains a variation of its amplitude according to this momentum. However, when an
electron is accelerated, then standard theory is referring us to the Ehrenfest theorem [19].
Incidentally, also Paul Ehrenfest was born in Vienna, in 1880. But his theorem only describes
the change of an expectation value in a system. It does not allow us to understand, how the
wavefunction changes its wavelength, or how the frequency of the wave increases when it interacts
with an accelerating potential. Within the present model, this is exactly described at the local
level by a new equation, which we call the local Ehrenfest theorem. Its mathematical expression
is:

f = −∇φ = ρ0
dv

dt
(19)

It states that the force (density) at a particular point of the electron is exactly equal to the
gradient of an external potential φ, and that it is described by its classical formulation, the
acceleration of its inertial mass. The reason that it is described by this equation is that
the number density or the mass density (here we use the two notions interchangeable) is
complemented by the spin density to yield a constant:

ρ+ S = ρ0 = constant (20)

The same applies to the square of the wavefunction, which is:

ψ∗ψ = ρ+ S = ρ0 = constant (21)

The time differential of momentum density at a particular point is therefore:

d

dt
(mψ∗ψv) = m (ψ∗ψ)

dv

dt
(22)

However, what is hidden in the classical expression is the shift of energy from the mass component
to the spin component as the electron accelerates:

Ṡ = −ρ̇ (23)

Here we find the reason for the change of wavelength in an acceleration process: the spin
component increases in amplitude, and as gradually more energy is shifted into this component
the wavelength becomes shorter and the frequency increases. A process, which so far has
remained buried underneath the mathematical formalism and is now open to analysis.

4.2. Stern-Gerlach experiments
An inhomogeneous magnetic field leads to deflection of atoms, if they possess a magnetic
moment. This effect was used, in the ground breaking experiments on silver by Gerlach and Stern
in 1922 [20], to demonstrate that the classically expected result, i.e. a statistical distribution
around a central impact, is not in line with experimental outcomes. The assumption that
the orbital moment would cause the deflection was also untenable, because in this case one
would observe an odd number of impact locations. Within the new model the effect is easy to
understand. Above, we derived the solution for the electron mass and spin density of a hydrogen-
like atom. Assuming that the valence electron of silver can be described in a similar model, we
find two different spin directions: one, parallel to the radial vector and directed outward, the
other, parallel to the radial vector and directed inward (see Fig. 2, left images). The induced
spin densities Si (see Fig. 2, centre), as the atoms enter the field, are due to the changes of the
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S0 Si

∆z

∆z

x

B

dH

dz

Figure 2. Spin measurement of a hydrogen-like atom. Left: the spin densities S0 are parallel to
the radial vector. Center: the direction of the induced spin densities Si is parallel or antiparallel
to the magnetic field. Right: due to the inhomogeneous field the atoms are deflected upward or
downward.

spin orientation in a time-dependent magnetic field, which comply with a Landau-Lifshitz like
equation [16]:

S = eS · S
deS
dt

= constant · eS ×
(
v × dB

dt

)
(24)

Then the induced spin densities will lead to a precession around the magnetic field B in two
directions, which will give rise to induced magnetic moments parallel, or anti parallel to the field.
In an inhomogeneous field the force of deflection is then directed either parallel or antiparallel to
the field gradient, leading to two deflection spots on the screen, exactly as seen in the experiments
(Fig. 2, right). While therefore in the standard model, which assumes that: (i) Spin is isotropic;
(ii) A measurement breaks the symmetry of the spin, no process exists, which could actually
explain the symmetry breaking of the initially isotropic spin, the situation is completely different
in the new model. Here the process is described by:

(i) Spin is isotropic.

(ii) The measurement induces spins aligned with the magnetic field.

(iii) The induced spins lead to positive or negative deflections in a field gradient.

The description is fully deterministic, since the initial direction of spin densities determines the
experimental outcome. Statistics only enter the picture, if the initial spin densities are unknown,
which they are in practice.

4.3. Interference experiments
Double slit experiments are so difficult to understand in the framework of standard quantum
mechanics that Richard Feynman called them ”a phenomenon which is impossible, absolutely
impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.
In reality, it contains the only mystery” [21]. The work done recently is already quite
convincing: whether it is with Bohm-type trajectories, fluctuating fields [22], or whether by
weak measurements [23], the result always seems to be that one particle passes through one
particular opening. In the standard framework the effects are calculated e.g. with the help
of Feynman path integrals. The process described in this mathematical framework is shown
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Figure 3. Double slit interferometry, Feynman path integrals. A single particle is assumed
to split into virtual particles prior to the interferometer. After the interferometer all particles
recombine, the acquired phases along their path determining the interference amplitude. A
single particle is detected at the detector screen.
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Figure 4. Double slit interferometry, real picture. Left: A single particle passing through an
opening of the interferometer acquires a discrete lateral momentum due to interactions with the
discrete interaction spectrum of atomic scale systems. The interference pattern is a series of
sharp impact regions. Right: due to the thermal energy of the slit environment and interactions
with molecules in air the impact regions broaden with a Gaussian until they resemble the wave-
like interference pattern in an optical interferometer.

in Fig. 3. A single particle, upon entering the vicinity of the interferometer, is assumed to
split into a number of virtual particles. Each virtual particle passes exactly one opening of the
interferometer, where it acquires a characteristic phase. After the interferometer, all particles
are again recombined interfering in a particular way due to their acquired phases. A single
impact is observed on the detector screen.

It is quite clear that this has nothing to do with real events. However, this insight does
not solve the problem, what actually happens so that single entities (electrons or photons),
will acquire certain deflections in an interferometer, and why these deflections have an uncanny
resemblance to interference patterns of light in an interferometer. In our view, this problem could
have been solved a long time ago by Duane [24]; a solution which was later taken up by Lande [25].
The key observation for their model is that every atomic scale system has a discrete interaction
spectrum. This means that every interaction of such a system with a single photon or electron
can only cause observable changes in the particle’s dynamics, if a discrete amount of energy is
exchanged, typically corresponding to the excitation of single lattice vibrations. Given this fact,
it is impossible that the particle acquires a continuous lateral momentum. Consequently, it also
cannot be detected in intermediate regions, unless its trajectory is additionally determined by
thermal broadening of the actual interaction. This model of the process can be experimentally
verified. The key to such a verification is the separation of the individual effects changing the
particle’s trajectory (see Fig. 4). In a liquid helium environment the thermal motion of atoms
is frozen. In addition, in an ultrahigh vacuum environment, no interactions with molecules
are possible. In a low temperature interferometer the impacts will be sharply defined images
of the particle beam deflected by interactions with the atomic environment, while a gradual
increase of the temperature of the interferometer should lead to a gradual broadening of the
impact regions. This broadening, moreover, should reflect the thermal energy range of the slit
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environment. Performing such a controlled experiment seems entirely feasible today, and in our
view it will establish that indeed the interaction with the atomic environment, and not some
fictitious splitting and recombination process is at the bottom of this - hundred years old -
mystery.

4.4. Interference of large molecules
It has been claimed, in a number of high-impact publications since 1999, that large molecules
can be made to interfere on gold gratings, and that these experiments show both, the coherence
of the molecules over macroscopic trajectories (range of cm), and that the wavelength of these
molecules is equal to the de Broglie wavelength of their inertial mass. However, in line with
the Duane-Lande model of interference, a different explanation for the experimental data seems
more likely.

As the exemplar of the standard interpretations we use in the following the first experiments
on C60 molecules, which were published in the journal Nature [26]. Due to the interest of the
Chemistry community in these molecules, their properties have been extremely well researched
in the past. Theorists routinely calculate their electronic properties, their phonon spectrum, and
their light absorption and emission spectrum. They have been adsorbed on surfaces and their
charge density distribution has been compared to the results of STM experiments, which verified
the theoretical results in great detail. As every Chemist will know, phonon or vibrational modes
of organic molecules are varied and range from a few meV (breathing modes, torsion) to a few
hundred meV (stretch modes). This particular molecule contains 60 carbon atoms, it thus has
180 modes of vibration which cover the whole energy range.

In the experiments the molecules are heated with laser light, reaching velocities of a few
hundred meters per second, and then passed through a grating with a width of about 50 nm,
and a depth of 100 nm. All molecules presented in this type of experiments so far are polarizable;
they can possess an electric dipole moment. After the grating it is observed that the molecular
impacts show a variation, which is taken as proof that the molecules possess a de Broglie
wavelength and interfere as coherent waves.

This seems problematic for various reasons. First, it is well known that the electronic density
is fully characterizing a many-electron system. A de Broglie wavelength can in principle not be
defined on the basis of the electronic density of these molecules. Second, it is also well known
that internal degrees of freedom of molecular systems start mixing after very short timescales,
in the range of picoseconds. That a molecule is heated with a laser - most likely leading to
excitation of electronic transitions - and then spends microseconds preserving a state vector
related to its translational motion, while shaking rapidly due to vibrational excitations is not
obvious. Third, it is even less obvious that such a molecule, with its time dependent dipole
moment, will not induce dipole moments in the slit system itself, which then interact with the
molecule’s dipole to alter its trajectory. And fourth, an interference of state vectors of this
molecule would mean that the molecule will split into several individual molecules. Given that
such a creation of additional molecules violates the energy principle by several MeV, this is
highly unlikely.

So how does it really work? Most likely the polarizable molecule is excited by laser light
so that most of its low lying vibrational excitations are activated. This molecule enters the
interferometer with a time-dependent dipole moment. As the molecule interacts with the
atomic environment of the interferometer, it induces electric dipoles into the slit system. These
time-dependent dipole moments interact with the molecular dipole moments until the molecule
has passed the interferometer. Due to the interaction the molecules acquire a distinct lateral
momentum. The momentum leads to a deflection on the detector screen. The deflection
is interpreted as the result of a de Broglie wave, because the distance from the point of no
deflection to the point of impact is inverse proportional to the velocity of the molecule. It is
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Figure 5. Aspect-type experiment. Two photons are emitted from a common source with an
initial unknown polarization angle ϕ0. Their polarization is then measured at points A and B.
(From Ref. [2]).

inverse proportional to the velocity of the molecule, because the time constant of the interaction
duration depends on the time the molecule spent in the slit environment. Then a faster molecule
will spend less time, therefore acquire less lateral momentum, therefore end up closer to the point
of no deflection. This, however, would not be the sign of a de Broglie wavelength, but the effect of
the constant distance from the entry to exit of the interferometer (100nm). This whole scenario
should be relatively easy to simulate with modern electronic structure methods. One could also
pin down the effect by using non-polarizable molecules in the experiments.

4.5. Aspect-type experiments
These experiments have been puzzling physicists for at least thirty years. The height of the
confusion was probably reached with Aspect’s review paper in the journal Nature in 1999,
where he stated: ”The violation of Bell’s inequality, with strict relativistic separation between
the chosen measurements, means that it is impossible to maintain the image a la Einstein
where correlations are explained by common properties determined at the common source and
subsequently carried along by each photon. We must conclude that an entangled EPR photon
pair is a non-separable object; that is, it is impossible to assign individual local properties (local
physical reality) to each photon. In some sense, both photons keep in contact through space
and time” [27].

We shall show in the following that exactly such a model a la Einstein can explain all
experimental data and that the confusion arises from a fundamental technical error in Bell’s
derivations. To explain the experiments in detail at the single photon level, let us start with
setting up a system composed of a source of photons at the point z = 0, and two polarization
measurements at arbitrary points z = A and z = −B. We assume that the polarization
measurements contain rotations in the plane perpendicular to z. We also assume that the two
photons are emitted from the source with an arbitrary angle of polarization ϕ0. It is irrelevant
for the following, whether the field vectors of the two photons rotate during propagation. If they
do, this will show up only as an additional angle ∆ between their polarization measurements
at A or −B. The setup of the experiment is shown in Figure 5. A single measurement at
A consists of two separate processes: First, the polarization angle is altered by an angle ϕA.
Mathematically, this is a rotation in three dimensional space and in the plane perpendicular to
the direction of motion, which can be described by the geometric product of a rotator in this
plane (a geometric product) ϕAe1e2 acting on the photon’s field vector S, which is parallel to
e3. To take care of normalization, we describe such a rotation as:

R(A) = exp [(ϕA + ϕ0) e1e2(e3)] = ei(ϕA+ϕ0) (25)

Then, the photon is detected, if the probability p which depends on the angle of rotation and
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the initial angle of polarization, is larger than a certain threshold:

p[R(A)] = [<(R(A))]2 = cos2 (ϕA + ϕ0) (26)

Depending on how we define our threshold, which is a function of the measurement equipment,
an impact at a certain angle of measurement ϕA and a certain initial angle ϕ0 is fully determined
by the knowledge of these two angles. The single event is thus fully accounted for. However, in
the actual experiments the angle ϕ0 is unknown, and it is randomly distributed over the whole
interval [0,2π]. A set of N experiments will thus lead to a random value for the probability,
covering the whole interval [0,1]. The single measurement is thus random. The same is true for
a measurement at point −B. Also here the polarization measurement is described by a rotation,
with a different and fully independent angle ϕB. The probability of detection is, along the same
lines:

p[R(B)] = [<(R(B))]2 = cos2 (ϕB + ϕ0) (27)

Also in this case the single event is fully accounted for if the initial angle ϕ0 and the angle of
polarization ϕB are known. Again, a set of N experiments will lead to a random value for the
probability, covering the whole interval [0,1].

One could now assume that the correlation probability is the product of the two measurement
probabilities at points A and −B, respectively. This is exactly what Bell assumed in the
derivation of his inequalities, when he wrote [28]:

P (a,b) =

∫
dλρ(λ)A(a, λ)B(b, λ) (28)

Here, λ has the same meaning as the initial angle ϕ0, and the crucial error lies in the assumption
that the correlation probability is the product of individual probabilities. This is manifestly
incorrect, because it disregards the mathematical properties of rotations. Two separate rotations
at A and −B have to be accounted for by a product of individual rotations, thus:

R(A) ·R(B) = exp [(ϕA + ϕ0) e1e2(e3)] · exp [(−ϕB − ϕ0) e1e2(e3)]

= exp [i (ϕA − ϕB)] (29)

It is impossible, from these two rotations, to derive a probability which is the product of two
positive numbers. Furthermore, the hidden variable ϕ0, which is present in the probability
of individual polarization measurements, is canceled out in the correlation derived from two
separate rotations. The correct form of the probability for the correlation derived from the two
rotations will be:

p[R(A), R(B)] = [< (R(A) ·R(B))]2 = cos2 (ϕA − ϕB) (30)

These probabilities are equal to the correlation probabilities derived in the Clauser-Horne-
Shimony-Holt formalism [29]:

C++ = C−− = cos2 (ϕA − ϕB) C+− = C−+ = 1− cos2 (ϕA − ϕB) (31)

They lead to the standard expectation values measured in Aspect-type experiments:

E (ϕA, ϕB) = cos [2 (ϕA − ϕB)] (32)

And they violate the Bell inequalities in the exact same way as found in the experiments:

S
(
ϕA, ϕ

′
A, ϕB, ϕ

′
B

)
= E(ϕA, ϕB)− E(ϕA, ϕ

′
B) + (33)

+ E(ϕ′A, ϕB) + E(ϕ′A, ϕ
′
B) = 2

√
2

if ϕA = 0, ϕ′A = 45, ϕB = 22.5, ϕ′B = 67.5. To repeat the findings: a model based on polarizations
and rotations in space recovers all experimental results. It allows for a cause-effect description
of every single measurement. It also violates the Bell inequalities. Not, because it is a non-local
model, but because Bell made a fundamental error in the derivation of his inequalities.
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Figure 6. Neutron scattering experiments by Littauer et al. [30]. A neutron consists of a
positive core and a negative shell. The radius of the neutron is about 1.38fm.

5. Towards a density model of atomic nuclei
5.1. Electrons and neutrons
It is quite natural, if one considers the electron an extended particle, to ask, what shape and
form it might have apart from the atomic environment. We know from DFT that its density,
consequently its shape, will depend on the potential environment. After all, we find much higher
densities of electron charge in heavier atoms with a higher number of central charges than we
find in hydrogen. So one may also ask, in what shape and form an electron exists, for example,
in a neutron. We know that the neutron decays outside an atomic nucleus in about 880 seconds
to a proton and an electron, with an excess energy of 785 keV, which is mostly converted into
X-ray radiation.

n0 → p+ + e− + 785keV (34)

We also know, from scattering experiments (see Fig. 6), that a neutron contains a core of
positive charge, which one could tentatively call the ”proton” and a shell of negative charge,
which one could to first instance identify as the ”electron”. If the electron exists in such a high
density phase, then one could also seek its eigenstates with the help of a Schrödinger equation
adapted to the much smaller lengthscales and much higher energy scales. However, for such
an assumption to make sense it first has to be determined, where the additional mass of the
neutron compared to isolated protons and electrons comes from. Here, it has to be remembered
that the radius of a neutron is much smaller than the radius of a hydrogen atom. Therefore, the
electrostatic field of an electron outside hydrogen has a very low energy of about 11 eV, while
this field has a large energy of close to 1 MeV for an electron with a radius of 1.38 fm:

W e
0 =

1

2

∫ re

∞
ε0|E|2dV =

1

4πε0

e2

re
≈ 11eV W e

n =
1

4πε0

e2

rn
≈ 1040keV (35)

Here, one finds that the electrostatic energy alone, considering mass equivalents, can account
for the excess mass. Next, it is necessary to analyze nuclear units. We know from atomic
physics that atomic units are defined from fundamental constants and determine the solution
of the hydrogen problem with the Schrödinger equation. Let me just remind the reader that an

exponentially decaying wavefunction ψ(r) = ρ
1/2
0 exp(−αr) leads to the following characteristic

equation and the solution for α:(
− h̄

2α2

2m
+

2h̄2α

2mr
− e2

4πε0r

)
ψ(r) = Eψ(r)

2h̄2α

2mr
− e2

4πε0r
= 0 → α =

me2

4πε0h̄
2 (36)
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If a similar solution exists for the neutron, then the decay constant must be different. We
account for this hypothesis by rescaling the Planck constant in a nuclear environment so that:

h̄n = xh̄ αn =
1.89× 1010m−1

x2
En =

EH
x2

(37)

The Schrödinger equation in a nuclear environment then reads:(
−1

2
∇2 − 1

r

)
ψn(r) = Enψn(r) (38)

The total energy is the sum of the positive energy of the electrostatic field and the negative
energy of the eigenvalue, it is known to be 785 keV. It depends, ultimately, on only two values:
the radius of the neutron, which is known from scattering experiments, and the scale x. With
a0 the Bohr radius we get:

Wn =
e2

4πε0a0

(
a0
rn
− 1

2x2

)
=

(
a0
rn
− 1

2x2

)
× 27.211[eV ] (39)

The scale x can therefore be calculated from experimental values. With rn = 1.38(415) fm and
Wn = 785 keV we get for the scale x and the energy scale En:

x =
1

187791/2
= αf En = 511keV = mec

2 (40)

Both of these values are very fundamental. In the standard model the fine structure constant αf
describes the difference in coupling between nuclear forces and electrostatic forces, while the rest
energy of the electron En is one of the fundamental constants in high energy physics. At present,
we do not have a clear indication of the significance of this finding. It is quite improbable, that
this result should be a mere coincidence. After all, the identity relies on two experimental values,
the radius of the neutron and the mass of the neutron. Had these values been different, the
fine structure constant or the rest energy of the electron would not have been the result of this
derivation. We expect that a nuclear model on the basis of high-density electrons, which we also
tentatively assume to be an element of physics in the 21st century, will be able to answer this
important question.

5.2. Magic nuclei
It is known that certain numbers of nucleons, assumed to be protons and neutrons in the
conventional model, lead to increased stability of atomic nuclei. If high-density electrons are the
glue that holds protons together, then protons in a nucleus will be in a regular arrangement.
In this case the problem of nuclear organization becomes to first instance a problem of three
dimensional geometry. Starting from a single proton, and adding one proton after the other,
always under the condition that the distances between protons are constant, will automatically
lead to a shell model of atomic nuclei, where a certain number of protons corresponds to closed
shells. In Fig. 7 we show the first seven closed shells. In particular the first four, with 4, 16, 28,
and 40 protons, correspond to magic nuclei in nuclear physics. Larger shells do not necessarily,
but it has to be considered that we do not yet have a comprehensive model of interactions within
an atomic nucleus, which could account for the observed nuclear masses. Compared to DFT
the additional complication within a nucleus are the relatively large volume of protons, which
probably cannot be taken into account with a model of point charges, and the unknown role
of nuclear forces. Also, it is quite unclear at present if the electrostatic interactions within the
nucleus have the same intensity as in a vacuum, how screening works, and what role the energy
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Figure 7. Closed shells of atomic nuclei for up to 100 protons. The shell model is only based
on geometry and does not include detailed interactions at this point.

of electrostatic fields will play in the overall picture. The first steps towards such a model are
therefore highly tentative and it is to be expected that a fully quantitative model of atomic
nuclei is still a long time in the future. However, such a model could provide a unified basis for
discussions in nuclear physics, which connects it seamlessly to other fields of physics: something,
which is manifestly not the case at present.
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