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Abstract. Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena
in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic
world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In
order to combine these two worlds in a common formalism, at least one of them must sacrifice
one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently
seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations.
In a first step, it will be shown where complex Riccati equations appear in time-dependent
quantum mechanics and how they can be treated and compared with similar space-dependent
Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent
Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be
shown that (real and complex) Riccati equations also appear in many other fields of physics,
like statistical thermodynamics and cosmology.

1. Introduction
In the beginning of the 20th century, one of the biggest mysteries in physics was the observation
of material systems behaving in certain experiments (as expected) like particles, in others,
however, (unexpectedly) like waves. This puzzle of wave-particle duality was finally solved
by quantum mechanics, developed around the same time by Heisenberg and Schrödinger,
whereby Schrödinger’s wave mechanical formulation [1] was more popular from the beginning
because it used partial differential equations, which were more familiar to most physicists than
Heisenberg’s matrix mechanics, though both are essentially equivalent. As Schrödinger’s original
formulation is based on classical Hamilton–Jacobi mechanics it bears similar features to its
classical counterpart, like conservation of energy (the operator corresponding to the Hamiltonian
function is Hermitian and a constant of motion) and time-reversal symmetry of the dynamics
(the time evolution is described by unitary transformations). Since Schrödinger’s equation is
linear and has features of a wave equation (for a complex quantity!) the superposition principle
applies. This is advantageous for computational purposes (besides being suitable for the above-
mentioned wave properties of material systems). As almost the last 90 years have shown,
quantum mechanics is not only scientifically, but also economically, the most successful and
influential theory so far.
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Towards the end of the 20th century, another development in physics became quite popular,
namely nonlinear (NL) dynamics [2] (also because of the aesthetically-appealing pictures of so-
called fractals [3] that were actually merely a side-product). This theory is able to describe many
of the phenomena observed in our every day surroundings like the weather, growth processes,
etc. It also includes such basic experiences like evolution with a direction of time and dissipation
of energy; both aspects are, as mentioned above, absent in quantum (and classical) mechanics
in the original canonical form. In addition, the laws of NL dynamics are usually scale invariant;
the size of the system does not matter only relative changes are relevant. There are phenomena
like self-similarity, fractals, Mandelbrot sets, etc. [4].

Apart from self-similarity, i.e., finding the same structures at different scales, a striking
property of fractals is the appearance of spiral forms, i.e., structures whose radius changes while
the angle rotates. This combination of radial and angular motion is well known in nature as
anyone can verify by looking at the shell of a nautilus or the horn of a ram. In these cases one
actually has a “frozen” picture of the evolution and the radius is in fact a measure of time (in
the case of the nautilus, the larger the distance from the centre, the older the part of the shell
is; with the ram, the opposite applies). The shape of these spirals usually takes the form of a
logarithmic spiral, where the radius grows (or shrinks) exponentially.

So, at the beginning of the 21st century, we are faced with a rather schizophrenic situation:

- Quantum mechanics (and other so-called fundamental theories) are

• reversible

• conservative

• linear.

- Observable (macroscopic) nature (as described, e.g., by NL dynamics) is

• irreversible

• dissipative

• nonlinear.

- In addition, there are fields of physics that are not naturally compatible with quantum
mechanics, like

• thermodynamics

• cosmology.

Now the question arises: is it possible to find a formulation that is able to unify all these
different aspects of physics? At first sight, the answer seems to be negative since linearity of
quantum mechanics, by definition, contradicts NL dynamics. But, could it be that quantum
mechanics is only a NL theory in disguise (in other words a linearized form of an underlying,
more fundamental NL theory)? It might even be only one example of many that can be traced
back to the same NL theory. So the question is not so much one of quantum mechanics emerging
from a more fundamental “sub-quantum” theory, but rather one of being a (linearized) version
of a formal NL theory where this theory applies to many other (in the luckiest case all) fields
of physics but appearing in different forms concealing the similarity of the underlying (NL)
structure.

In the following, it shall be shown how a (complex) Riccati equation might be a candidate
for such a fundamental NL theory. Not only does this equation possess a kind of superposition
principle, due to its linearizability, but it also has properties usually common only in NL systems,
like sensitivity to initial conditions, bifurcation, and so on.
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In Section 2, it will be shown that complex Riccati equations already occur in conventional
time-dependent (TD) quantum mechanics and formal similarities (pertaining to the sensitivity
to initial conditions) with supersymmetric quantum mechanics will be emphasized. Section
3 presents a short overview of similar formal structures that also exist in time-independent
(TI) quantum mechanics. Dissipative versions of both aspects exist, but since they have been
discussed in previous articles, details will not be given here but can be found in [5]. Section 4
comprises a comparison of the formal structures found in Section 2 with similar ones in statistical
thermodynamics and cosmology.

2. Complex Riccati equations related to the time-dependent Schrödinger equation
In the following, one-dimensional problems with exact analytic solutions of the TD Schrödinger
equation (SE) in the form of Gaussian wave packets will be considered, particularly the free
motion (potential V (x) = 0) and the harmonic oscillator (HO) (V = m

2 ω
2x2) with constant

frequency, ω = ω0, or TD frequency, ω = ω(t). In these cases, the solution of the TDSE (here
for the HO, the case V = 0, in the following, is always obtained in the limit ω → 0)

ih̄
∂

∂t
Ψ(x, t) =

{
− h̄2

2m

∂2

∂x2
+
m

2
ω2x2

}
Ψ(x, t) (1)

(where h̄ = h
2π with h = Planck’s constant) can be written as

Ψ(x, t) = N(t) exp

{
i

[
y(t) x̃2 +

< p >

h̄
x̃+K(t)

]}
(2)

with the shifted coordinate x̃ = x− < x >= x − η(t), where the mean value < x >=∫+∞
−∞ Ψ∗xΨdx = η(t) corresponds to the classical trajectory, < p >= mη̇ represents the classical

momentum and the coefficient of the quadratic term in the exponent, y(t) = yR(t) + iyI(t), is
a complex function of time. The (possibly TD) normalization factor N(t) and the purely TD
function K(t) in the exponent are not relevant to the following discussion.

The equations of motion for η(t) and y(t), or
(

2h̄
m y = C

)
that are obtained by inserting WP

(2) into Eq. (1) are important for our purpose and are given by

η̈ + ω2η = 0 , (3)

and
Ċ + C2 + ω2 = 0 , (4)

where overdots denote derivatives with respect to time. The Newtonian equation (3) simply
means that the maximum of the WP, located at x =< x >= η(t), follows the classical trajectory.
The equation for the quantity 2h̄

m y(t) = C has the form a of a complex NL Riccati equation and
describes the time-dependence of the WP width that is related to the position uncertainty via
yI = 1

4<x̃2>
with < x̃2 >=< x2 > − < x >2 being the mean square deviation of position.

The dynamics of this quantity can be described more conveniently by introducing a new (real)

variable α(t) via CI =
(

2h̄
m yI

)
= 1

α2 . Inserting this into the imaginary part of Eq. (4) allows

one to determine the real part of the variable as CR =
(

2h̄
m yR

)
= α̇

α , which, when inserted into

the real part of (4) together with the above definition of CI , finally turns the complex Riccati
equation into the real NL so-called Ermakov equation 1 for α(t),

α̈+ ω2α =
1

α3
. (5)

1 This equation was studied already in 1874 by Adolph Steen [6]. However, Steen’s work was ignored by
mathematicians and physicists for more than a century because it was published in Danish in a journal usually
not containing many articles on mathematics. An English translation of the original paper [7] is available and
generalizations can be found in [8].
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It had been shown by Ermakov [9] in 1880, i.e., 45 years before quantum mechanics was
formulated by Schrödinger and Heisenberg, that from the pair of equations (3) and (5), coupled
via ω2, by eliminating ω2 from the equations, a dynamical invariant, the Ermakov-invariant

IL =
1

2

[
(η̇α− ηα̇)2 +

(
η

α

)2
]

= const. (6)

can be obtained (this invariant was rediscovered by several authors, also in a quantum mechanical
context; see, e.g., [10, 11, 12]).

In the following, the remarkable properties of this invariant shall not be further considered
(for details, see [13]), but a different way of treating the (inhomogeneous) Riccati equation shall
be discussed. Instead of transforming it into the (real) NL Ermakov equation (5), it can be
solved directly by transforming it into a homogeneous NL (complex) Bernoulli equation if a
particular solution C̃ of the Riccati equation is known. The general solution of Eq. (4) is then
given by C = C̃ + V(t) where V(t) fulfils the Bernoulli equation

V̇ + 2 C̃V + V2 = 0 . (7)

The coefficient of the linear term depends on the particular solution C̃. Equation (7) can be
linearized via V = 1

κ(t) to yield

κ̇− 2 C̃ κ = 1 , (8)

which can be solved straightforwardly. For constant C̃, κ(t) can be expressed in terms of
exponential or hyperbolic functions (for real C̃) or trigonometric functions (for imaginary C̃). In
this case, C can be written as

C(t) = C̃ +
e−2 C̃t

1
2C̃

(
1− e−2 C̃t

)
+ κ0

. (9)

For C̃ being TD, κ(t) and hence V can be expressed in terms of I(t) =
∫ t dt′ e−

∫ t′
dt”2C̃(t”).

So the general solution of Eq. (4) can be written as

C(t) = C̃ +
d

dt
ln [κ0 + I(t)] , (10)

defining a one-parameter family of solutions depending on the (complex) initial value of κ0 = V−1
0

as parameter. To realize the strong qualitative influence of the initial value κ0 on the solution
of the Riccati equation (which is not surprising since this is a NL differential equation), a
comparison with supersymmetric (SUSY) quantum mechanics [14, 15, 16, 17] might be quite
useful.

In SUSY quantum mechanics, the Hamiltonian can be represented by a 2 × 2 diagonal

matrix where the potentials Vi of the Hamiltonian operators Hi = − h̄2

2m
d2

dx2
+ Vi (i= 1,2)

on the diagonal are determined by a (real) Riccati equation for the so-called “superpotential”
W (x),

V1/2 =
1

2

[
W 2 ∓ h̄√

m

d

dx
W

]
, (11)

and differ only by the sign of the term depending on the derivative of W (x). Again, one can try
to solve this Riccati equation by reducing it to a Bernoulli equation using a particular solution

EmQM13: Emergent Quantum Mechanics 2013 IOP Publishing
Journal of Physics: Conference Series 504 (2014) 012005 doi:10.1088/1742-6596/504/1/012005

4



W̃ . In the case of the HO, this particular solution is given by W̃ =
√
mω0 x, leading to the

two potentials

Ṽ1/2 =
m

2
ω2

0 x
2 ∓ h̄

2
ω0 , (12)

i.e., essentially the parabolic harmonic potential, only shifted by minus/plus the ground state
energy h̄

2ω0. The general solution can again be written in the form W (x) = W̃ (x) + Φ(x)
where Φ(x) must now fulfil the Bernoulli equation

h̄√
m

d

dx
Φ + 2 W̃ Φ + Φ2 = 0 (13)

(written here for the plus sign of the derivative). This can be solved in the same way by
linearization to finally yield the general solution

W (x) = W̃ (x) +
h̄√
m

d

dx
ln [ε+ I(x)] . (14)

The integral I(x) is formally identical to the one in the TD case, only t must be replaced by
x and C̃ by W̃ . Also this solution depends on a (this time real) parameter ε (corresponding to
Φ−1(0)). This generalized W (x) gives rise to a one-parameter family of isospectral potentials
(e.g., for i = 1)

V1(x; ε) = Ṽ1(x) − h̄2

m

d2

dx2
ln [ε+ I(x)] , (15)

i.e., potentials with different shapes, but the same energy spectrum, namely that of the HO,
only with ground state energy equal to zero (apart from ε = 0, where this state is missing).

The shape of the potentials is now, however, unlike the parabolic harmonic potential, no
longer symmetric under the exchange x→ −x; there is even a second minimum showing up for
negative x whose depth increases with decreasing ε (for details, see [16]). Only for ε→ ∞, the
ln-term vanishes and the parabolic potential Ṽ1(x) is re-gained. So, obviously the parameter ε
can have drastic qualitative consequences for the solution of the Riccati equation. The same
can also happen in the above-mentioned TD case when κ0 is varied.

Finally, a third way to treat the complex Riccati equation (4) shall be mentioned. Using the
ansatz

C =

(
2h̄

m
y

)
=

λ̇

λ
, (16)

with complex λ(t) linearizes Eq. (4) to yield the complex Newtonian equation

λ̈+ ω2(t)λ = 0 . (17)

Writing λ in terms of real and imaginary parts, i.e., λ = u + i z would just result in two
identical Newtonian equations for u and z where it can be shown [18] that, up to a constant
factor, z is identical to the classical trajectory η(t). More information can be gained by writing
λ in polar form as λ = αeiϕ. From definition (16) one then obtains

C =
α̇

α
+ i ϕ̇ . (18)

Inserting C in this form into the complex Riccati equation turns the imaginary part of this
equation into

ϕ̇ =
1

α2
, (19)

which looks like the conservation of angular momentum for the motion of λ(t) in the complex
plane (and also agrees with the definition of CI at the beginning of this section). The real part
of the Riccati equation then turns simply into the Ermakov equation (5) for α(t).
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3. Complex Riccati equations related to the time-independent Schrödinger
equation
We have seen in the TD case that the real and imaginary parts, or phase ϕ and amplitude α, of
the complex variable λ(t) = α eiϕ which fulfils the linear equation (17), obtained via Eq. (16)
from the Riccati equation (4), are not independent of each other but coupled via the conservation
law (19). A similar situation exists when considering the TISE, but now in the space-dependent
case.

This can be shown using Madelung’s hydrodynamic formulation of quantum mechanics [19]
where the wave function is written in polar form as

Ψ(r, t) = %1/2(r, t) exp

(
i

h̄
S(r, t)

)
(20)

with the square root of the probability density % = Ψ∗Ψ as amplitude and 1
h̄S as phase (r is the

position vector in three dimensions).
Inserting this form into the TDSE (1) (now in three dimensions), and replacing ∂

∂x by the
nabla operator ∇), leads to a modified Hamilton–Jacobi equation for the phase,

∂

∂t
S +

1

2m
(∇S)2 + V − h̄2

2m

∆%1/2

%1/2
= 0 , (21)

and a continuity equation for the amplitude,

∂

∂t
% +

1

m
∇(% ∇S) = 0 . (22)

Already here, the coupling of phase and amplitude can be seen clearly since the Hamilton–
Jacobi equation for the phase S contains a term (misleadingly called “quantum potential”, Vqu)
depending on %, and the continuity equation for the density % contains ∇S. It can be shown
that also in the TI case this coupling is not arbitrary but related to a conservation law.

In 1994, G. Reinisch [20] did this in a NL formulation of TI quantum mechanics. Since in this
case ∂

∂t% = 0 and ∂
∂tS = −E are valid, the continuity equation (22) (we now use the notation

%1/2 = |Ψ| = a) turns into
∇(a2∇S) = 0 (23)

and the modified Hamilton–Jacobi equation into

− h̄2

2m
∆a + (V − E) a = − 1

2m
(∇S)2a . (24)

Equation (23) is definitely fulfilled for ∇S = 0, turning (24) into the usual TISE for the
real wave function a = |Ψ| with position-independent phase S. (N.B.: the kinetic energy term
divided by a is just identical to Vqu!)

However, Eq. (23) can also be fulfilled for ∇S 6= 0 if only the conservation law

∇S =
C

a2
(25)

is fulfilled with constant (or, at least, position-independent) C.
This relation now shows explicitly the coupling between phase and amplitude of the wave

function and is equivalent to Eq. (19) in the TD case. Inserting (25) into the rhs of Eq. (24)
changes this into the Ermakov equation

∆a +
2m

h̄2 (E − V ) a = (
1

h̄
∇S)2 a =

(
C

h̄

)2 1

a3
, (26)
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equivalent to Eq. (5) in the TD case.
Returning to the method described in [20], so far the energy E occurring in Eq. (26) is

still a free parameter that can take any value. However, solving this equation numerically for
arbitrary values of E leads, in general, to solutions a that diverge for increasingx. Only if
the energy E is appropriately tuned to any eigenvalue En of the TISE (see Eq. (28), below)
does this divergence disappear and normalizable solutions can be found. So, the quantization
condition that is usually obtained from the requirement of the truncation of an infinite series in
order to avoid divergence of the wave function is, in this case, obtained from the requirement of
nondiverging solutions of the NL Ermakov equation (26) by variation of the parameter E. This
has been numerically verified in the case of the one-dimensional HO and the Coulomb problem
and there is the conjecture that this property is “universal” in the sense that it does not depend
on the potential V (see [20, 21]).

The corresponding complex Riccati equation is now given by

∇
(∇Ψ

Ψ

)
+

(∇Ψ

Ψ

)2

+
2m

h̄2 (E − V ) = 0 (27)

with the complex variable C =
(
∇Ψ
Ψ

)
= ∇a

a + i 1
h̄∇S which corresponds to(

2h̄
m y
)

= λ̇
λ = α̇

α + i ϕ̇ in the TD problem.

It is possible to show straightforwardly that Eq. (27) can be linearized to yield the usual
TISE

− h̄2

2m
∆Ψ + V Ψ = E Ψ , (28)

but in this form, the information on the coupling of phase and amplitude, expressed by Eq. (25)
and originating from the quadratic NL term in Eq. (27), gets lost.

4. Riccati equations in other fields of physics
Let us return to solution (9) of the Riccati equation (4), but now for real C, and rewrite it in
the form

C(t) = C̃ +
2C̃ e− 2C̃t

κ0 2C̃ +
(
1− e−2C̃ t

) = C̃ +
2C̃

κ0 2C̃ e2C̃t +
(
e2C̃ t − 1

) . (29)

For the choice κ0 = 0, this turns into

C(t) = C̃ +
2C̃(

e2C̃ t − 1
) = C̃ coth C̃t . (30)

Replacing time t by t → 1
kT = β (with k = Boltzmann’s constant) and the constant

particular solution by C̃ = h̄
2 ω, one obtains

h̄

2
ω +

h̄ ω

eh̄ω/kT − 1
=

h̄

2
ω coth

(
h̄ω

2kT

)
= < E >th (31)

which is the expression known from statistical thermodynamics for the average energy of a single
oscillator in thermal equilibrum [22]. The first term on the lhs is just the ground state energy
of the harmonic oscillator, the second is equal to Planck’s distribution function for the black
body radiation. This type of relation between Eq. (31) and the Riccati equation has also been
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found by Rosu et al [23]. Equation (31) can also be expressed in terms of the partition function
Z =

∑
n e−nh̄ωβ = 1

1 − eh̄ωβ
as

< E >th =
h̄

2
ω +

∂
∂β Z

−1

Z−1
=

h̄

2
ω − ∂

∂β
ln Z . (32)

The Riccati equation corresponding to solution (30) in the form (31) can be written as

C′ + C2 − C̃2 = 0 (33)

with C = C(β) depending on the variable β = 1
kT , prime denoting derivative with respect to

this variable and C̃, as mentioned above, being the ground state energy, C̃ = h̄
2ω. The inverse

quantity of C, multiplied by − C̃2, i.e., K = − C̃2 C−1 fulfils

− K′ + K2 − C̃2 = 0 , (34)

i.e., also a Riccati equation but now with negative sign for the derivative term and the solution

K
(

1

kT

)
=

h̄

2
ω − h̄ ω

eh̄ω/kT + 1
=

h̄

2
ω tanh

(
h̄ω

2kT

)
. (35)

¿From the ground state energy in this case a term is subtracted that represents a Fermi–Dirac
distribution, whereas in the solution for C, a term was added to the ground state energy that
represents a Bose–Einstein distribution. So both quantum statistics can be obtained from the

solution of the Bernoulli equations derived from the Riccati equations for C
(

1
kT

)
and (essentially)

its inverse quantity.
Another connection between Bose–Einstein systems and a Riccati equation (in this case a

complex one) can be found if a Bose–Einstein condensate (BEC) is described in the mean field
approximation by a macroscopic wave packet for the condensate, Ψ, which obeys the Gross–
Pitaevskii equation

ih̄
∂

∂t
Ψ =

{
− h̄2

2m
∆ + V (r, t) + g|Ψ|2

}
Ψ (36)

where V (r, t) represents the trapping potential and shall be given by V (r, t) = m
2 ω

2(t)r2 with
r = |r| = absolute value of the vector r and TD frequency ω = ω(t). Although this equation
cannot be solved analytically, the dynamics of the BEC described by it can be obtained from a
set of coupled differential equations for so-called moments that essentially represent the width,
radial momentum and energy of the wave packet (for details, see [24]). The important point
is that these three moments fulfil a closed set of three TD differential equations that (with the
help of a conserved quantity K that corresponds to the conserved angular momentum in the
complex plane, discussed in section 2) can be reduced to one equation for the square root of the
width (denoted by X(t) and corresponding to α(t) in section 2) with the form of an Ermakov
equation,

Ẍ + ω2(t)X =
k

X3
. (37)

Since Eq. (37) is, as we have seen in section 2, only a different way of writing a complex
Riccati equation by making use of a conservation law, also this BEC can be described by a, now
complex, Riccati equation.

Finally, another example shall be given where a physical system can be described by a
(complex) Riccati equation, or its equivalent, a real Ermakov equation, now not for a microscopic
but for a really macroscopic system. For this purpose, we switch to cosmology and apply
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to Einstein‘s field equations the cosmological principle, i.e., the assumption of a spatially-
homogeneous and isotropic universe. In this case, the Robertson–Walker metric applies [25]
that contains the scale factor a(t) (so to say, the radius of the universe) and the curvature k
that can attain the values 0 for a flat or ± 1 for a closed or open universe. This finnaly leads to
the Friedman–Lemaitre equations(

ȧ

a

)2

= H2 =
2

3
% − k

a2
(38)

and
%̇ = − 3 H (% + p) (39)

with H = ȧ
a = Hubble parameter; overdots denote derivatives with respect to cosmic proper

time, % = energy density and p = pressure (where 4πG = c = 1 and the cosmological constant
Λ = 0 have been set).

Assuming the matter source as a self-interacting scalar field Φ = Φ(t), the energy density %
and pressure p can be written as

% =
1

2

(
d

dt
Φ

)2

+ U(t) , (40)

p =
1

2

(
d

dt
Φ

)2

− U(t) . (41)

Taking the time-derivative of (38) and inserting (39) using (40) and (41) leads to

d

dt

(
ȧ

a

)
= −

(
d

dt
Φ

)2

+
k

a2
. (42)

Introducing a new time variable (conformal time τ) via d
dt = a d

dτ , Eq. (42) can be rewritten
as an Ermakov equation,

d2

dτ2
a +

(
d

dτ
Φ

)2

a =
k

a3
, (43)

which is equivalent to a Riccati equation for the complex quantity C =

(
d
dτ

a

a + i 1
a2

)
. The

above derivation of the Ermakov equation in comparison with the afore-mentioned BEC had
been given by Lidsey in [26]. Everything said about the complex or real Ermakov equation
in section 2 can also be applied to this system, e.g., corresponding creation and annihilation
operators and coherent states can be defined (see [13]).

5. Conclusions and perspectives
It has been shown in section 2 that the information about the dynamics of a quantum mechanical
wave packet, i.e. the equations of motion for the time-evolution of its maximum and width can
not only be obtained from the solution of the TDSE, but equally well from a complex NL
Riccati equation. The square root of the inverse of the imaginary part of the quantity fulfilling
this equation, α(t), is (up to a constant factor) just the width of the wave packet, fulfilling a
so-called Ermakov equation. The classical particle aspect that is reflected by the Newtonian
equation determining the motion of the wave packet maximum can also be obtained, using that

the complex Riccati equation can be linearized by the ansatz C = λ̇
λ to a Newtonian equation

for the complex quantity λ(t), which can be written as λ = u+ z = α eiϕ. From the knowledge
of α (as solution of the Ermakov equation) and with ϕ̇ = 1

α2 , ϕ(t) can be determined and hence
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λ(t) is obtained. Knowing that z ∝ η(t), the imaginary part of λ provides (up to a constant
factor) immediately the classical trajectory η(t).

Formal similarities exist between this TD problem and SUSY quantum mechanics, ehere
(real) position dependent Riccati equations play a similar role and the construction of isospectral
potentials show the importance of parameters like initial conditions.

In Section 3 it has been shown that the Riccati formalism established for the TDSE can also
be applied to the TISE if the TD complex quantity C = λ̇

λ is replaced by the space-dependent

complex quantity ∇Ψ
Ψ for a complex wave function Ψ. In a certain way, this looks like a complex

version of SUSY where not only the logarithmic derivative of the ground state is considered as
a variable for a Riccati equation, but also any (even complex) excited state may fulfil a now
complex Riccati equation.

The flexibility of the Riccati formalism is illustrated in section 4 where we see that it is
not only restricted to quantum mechanics. Replacing time t with (actually imaginary) “time”
h̄
kT leads to well-known expressions from statistical thermodynamics as solutions of Riccati
equations that are also able to distinguish between bosonic and fermionic properties. While
this example was still dealing with real Riccati equations, in the next example it was shown
that also the dynamics of a BEC can be described by a complex Riccati or the corresponding
Ermakov equation. Finally, we went from the microscopic scale to the really macroscopic one, to
cosmology and demonstrated that the Friedman–Lemaitre equations, under certain assumptions,
describe the dynamics of our universe and can be written in terms of a real Ermakov or equivalent
complex Riccati equation.

There are also many more examples, from electrodynamics via quantum optics to soliton
theory, etc., where the Riccati equation allows for a unifying formulation with the fields
mentioned above as well as others. In conclusion therefore, one can say that the NL version of
quantum mechanics based on a (complex) Riccati equation is able to cover all phenomena of
standard quantum mechanics (including the superposition principle, due to its linearisablity).
Due to the sensitivity of NL differential equations to the initial conditions, it can further
provide additional information that gets lost in the linearised form. The complex form of the
Riccati equation also supplies (via its imaginary part) a new conservation law that resembles the
conservation of angular momentum, but now for the motion in the complex plane; something
closely related to the quantum property spin.

It should also be mentioned again that effects like dissipation and irreversibility can easily be
included into the Riccai formalism. In the TD case, only an additional term linear in C appears in
Eq. (4). Since in the solution via the homogeneous Bernoulli equation (7) a linear term already
occurs, only the coefficient of this term changes. However, in the TD quantum mechanical case,
this leads to bifurcation, i.e., two qualitatively different solutions for the dynamics of the wave
packet width, a phenomena well-known in NL dynamics but alien to quantum mechanics (for
details see [27]). For the damped HO, λ(t) is no longer moving on a circle in the complex plane
but on a spiral with the radius decreasing exponentially.

So maybe it is not so much the question of quantum mechanics emerging from an underlying
theory that possesses properties like non-equilibrium thermodynamics, hybrid-mechanics or
other structures, but that of quantum mechanics, thermodynamics, nonlinear dynamics and
other fields of physics somehow being traced back to a formalism based on complex NL Riccati
equations or generalizations thereof.
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