Time delay in atomic photoionization with circularly polarized light

To cite this article: A S Kheifets and I A Ivanov 2014 J. Phys.: Conf. Ser. 488 032003

View the article online for updates and enhancements.

Related content

- Noether symmetry and conserved quantity for a Hamilton system with time delay
 Jin Shi-Xin and Zhang Yi

- Atomic photoionization: When does it actually begin?
 A S Kheifets, I A Ivanov and Igor Bray

- Average Synchronization and Temporal Order in a Noisy Neuronal Network with Coupling Delay
 Wang Qing-Yun, Duan Zhi-Sheng and Lu Qi-Shao
Time delay in atomic photoionization with circularly polarized light

A.S.Kheifets¹, I.A.Ivanov²

Research School of Physical Sciences, The Australian National University, Canberra ACT 0200, Australia

Synopsis

We present a study of the time delay in atomic photo-ionization by circularly polarized laser pulse. We considered initial electron states that are co- and counter-rotating with respect to the electric field. We found, that similarly to the photoelectron spectra, studied extensively in the literature, the time delays are markedly different for these two orientations, depending sensitively on the field strengths and pulse durations.

Atomic or molecular photo-ionization in a circularly polarized electromagnetic (EM) field exhibits a number of features that are absent in the case of linear polarization. One such effect is dependence of the photo-ionization probability on magnetic quantum number m of the target electron or, in other words, on the direction of the rotation of the electron relative to the polarization plane of light. This dichroism effect has been known for a long time [1,2].

Time delay [3] is a quantity related to the phase of the ionization amplitude, which provides an insight into development of the photo-ionization process in time. Here we present a study of the dichroism in time delay in atomic photo-ionization by circularly polarized light.

As a model we choose photo-ionization of the Li atom. We solve the time dependent Schrödinger equation for the Li atom in the field of the circularly polarized EM laser pulse propagating along the z-axis. We call the atomic electron co- or counter-rotating with the field if its angular momentum projection m on the z-axis is $m>0$ or $m<0$, respectively.

Our study shows that not only co- and counter-rotating electrons escape with different probabilities, but their time delays are also markedly different as illustrated in Figure 1.

![Figure 1. Time delays as functions of the polar angle in the polarization plane of the EM wave. Ionization from the lithium states $2p_m$ with $m=1$ (red solid line), and $m=-1$ (green dash). The peak strength of the EM field is 0.05 a.u. (8.7×10^{13} W/cm²), photon energy is 0.5 a.u. (13.6 eV), pulse duration is 3 optical cycles (1 fs).](image)

References

¹ E-mail: A.Kheifets@anu.edu.au
² E-mail: Igor.Ivanov@anu.edu.au