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Abstract. The article is concerned with the study of asymptotic behavior of solutions of the
Burgers equation and its generalizations with initial value — boundary problem on a finite
interval, with constant boundary conditions. Since these equations take a dissipation into
account, it is naturally to presuppose that any initial profile will evolve to an invariant time-
independent solution with the same boundary values. Yet the answer happens to be slightly more
complex. There are three possibilities: the initial profile may regularly decay to an invariant
solution; or a Heaviside-type gap develops through a dispersive shock and multi-oscillations;
or, exotically, an asymptotic limit is a ’frozen multi-oscillation’ piecewise-differentiable solution,
composed of different smooth invariant solutions.

1. Introduction
The Burgers equation

ut(x, t) = ε2uxx(x, t)− u(x, t)ux(x, t). (1)

is related to the viscous medium whose oscillations it describes. This viscosity dampens
oscillations except for stationary solutions which are invariant for some subalgebra of the full
symmetry algebra of the equation. While studying the equation on the whole line only bounded
solutions are usually taken into account since only they have a physical meaning. It is not the
case for a finite interval as an unbounded solution may still remain bounded within an interval.
Thus we obtain a wider choices of invariant solutions and asymptotics and, consequently, some
new effects. The generalized Burgers equation here is of the form

ut(x, t) = ε2uxx(x, t)− αun(x, t)ux(x, t). (2)

We consider initial value - boundary problem (IVBP) for the Burgers equation on a finite
interval:

u(x, 0) = f(x), u(a, t) = l(t), u(b, t) = r(t), x ∈ [a, b]. (3)

The case of constant boundary conditions u(a, t) = A, u(b, t) = B and the related asymptotics
are of a special interest here.

Some of our results are similar to those of Dubrovin et al [1, 2, 3] dealing with a formation of
dispersive shocks in a class of Hamiltonian dispersive regularizations of the quasi-linear transport
equation. For the Burgers equation the shocks resulting in breaks (and preceded by a multi-
oscillation) do develops for some IVBPs; some other IVBPs lead to a monotonic convergence
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to an invariant solutions. One new possibility for the asymptotic profile is a class of frozen
multi-oscillating solutions.

This paper is a continuation of [4, 5]. Numeric results are obtained via the Maple PDETools
package.

2. Solutions and symmetries
The Burgers (1) stationary solutions are:

u(x, t) = c, (4)

u(x, t) = −ε2k tanh(kx+ c), (5)

u(x, t) = −ε2k coth(kx+ c), (6)

u(x, t) = εk tan(
kx+ c

ε
), (7)

u(x, t) =
kε2

kx+ c
. (8)

For the generalization (2) stationary solutions are given by

x = C1 + ε2(n+ 1)

∫
dy

C2 + αyn+1
,

y = C.

These solutions are invariant under the t-translation symmetry.
Consider a simple IVBP for (1) of the form (3)

u(x, 0) = f(x), u(0, t) = A, u(1, t) = B, A,B ∈ R. (9)

Taking the dissipation into the account it is naturally to presuppose that at t → ∞ we get
u(x, t) → yAB(x)) where yAB(x)) is a unique stationary solution corresponding to the ordinary
differential problem y′′ − 2yy′ = 0, y(0) = A, y(1) = B.

Such solutions do exist and the first conjecture was that this limit does not depend on the
initial profile f(x).

Note that only bounded solutions (they are, incidentally, non-decreasing) are of interest if (1)
is considered on the whole line x ∈ R. But on x ∈ [a, b] anyone of the above list suits, providing
the singularity is not on the interval. The same is true for a more general (2).

3. Stability of invariant solutions
A solution of the (generalized) Burgers equation

ut = uxx − αunux (10)

with zero boundary conditions

u(t, a) = u(t, b) = 0, u(0, x)|[a,b] = f(x) (11)

monotonically tends to zero as t → ∞ in L2 norm since

∂

∂t

∫ b

a
u2dx =

∫ b

a
2uutdx = 2

∫ b

a
u(uxx − αunux)dx = (12)

2

∫ b

a
udux +

−α

n+ 1
un+1

∣∣∣∣b
a

= 2uux|ba − 2

∫ b

a
u2xdx = −2

∫ b

a
u2xdx 6 0
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The greater ux the faster the convergence.
When the boundary conditions are non-zero but constant

u(0, x)|[a,b] = f(x) u(t, a) = f(a) = A, u(t, b) = f(b) = B, (13)

one may expect the solution to converge to the respective stationary invariant solution, ie, to
µ(x),

µxx − αµnµx = 0, µ(a) = A, µ(b) = B (14)

Such a solution exists and is of one of the above listed forms depending on the combination of
A and B.

The answer to this hypothesis is complex.
Let us see how evolves the difference between u and the solution of (14). Denote ν(t, x) =

u(t, x)− µ(x), ie, u(t, x) = ν(t, x) + µ(x). Substituting the latter into (10) we get

ut = (ν(t, x) + µ(x))t = ν(t, x)t = uxx − αunux = (15)

(ν(t, x) + µ(x))xx − α(ν(t, x) + µ(x))n(ν(t, x) + µ(x))x.

In the case n = 1 and α = 2 it equals νxx−2ννx+[µxx−2µµx]−2{νxµ+νµx} The expression
in square brackets equals zero. So

νt = νxx − 2ννx − 2(νµ)x. (16)

Boundary conditions for ν are zero by definition.
We evaluate the rate of ν by analogy with (12):

⟨νt⟩|L2 =
∂

∂t

∫ b

a
ν2dx =

∫ b

a
2ννtdx = 2

∫ b

a
ν(νxx − 2ννx − 2(νµ)x)dx =

2

∫ b

a
νdνx −

4

3
ν3
∣∣∣∣b
a

− 4

∫ b

a
νd(νµ) = 2ννx|ba − 2

∫ b

a
ν2xdx− 4ν(νµ)|ba + 4

∫ b

a
µννxdx =

−2

∫ b

a
ν2xdx+ 2

∫ b

a
µdν2 = −2

∫ b

a
ν2xdx+ 2

∫ b

a
µxν

2dx− 2 ν2µ
∣∣b
a
= −2

∫ b

a

(
ν2x + µxν

2
)
dx. (17)

Thus the monotony of L2-convergence is not automatically guaranteed; but it surely takes
place, for instance in the case µx > 0 (the case of the increasing initial profile, which agrees with
the characteristics method). In the case n > 1 the corresponding conditions are somewhat less
transparent; for instance when n = 2

∂

∂t

∫ b

a
ν2dx = −2

∫ b

a

(
ν2x − µxν

2(µx − νx)
)
dx.

It follows that µx(µx − νx) > 0 guarantees decay: if such conditions are satisfied the deviation
ν decays to zero. When the inequality ⟨νt⟩|L2 > 0 fails (eg, for decreasing initial profile) the
difference ν doesn’t necessarily tend to zero. Usually the evolution ends in catastrophe or decay,
but sometimes and somehow it stabilizes half-way.
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Figure 1. Initial profile −ε2 tanh(x) +
1.6ε sin(2πx), u(0, t) = 0, u(1, t) =
−ε2 tanh(1). Asymptotic limit (dash line) is
the invariant solution −ε2 tanh(x); n=1

Figure 2. The graph of the integrand ν2x +
µxν

2 in equation (17), at t = 2.

Figure 3. Initial profile −ε2 tanh(x) +
ε((sech2(x)) (dashed) and asymptotic limit
2.06ε2 tanh(−2.06x+ 2.1) (solid line).

3.1. Decay
Here are two examples of a decay towards a decreasing invariant solution. In both cases the
initial profile is chosen in a vicinity of this solution and the right-hand side of (17) is negative.

Consider the equation ut = ε2uxx − 2uux.

(i) Choose IVBP: u(x, 0) = −ε2 tanh(x) + 1.6ε sin(2πx), u(0, t) = 0, u(1, t) = −ε2 tanh(1);
ε = 0.05. Here µ = −ε2 tanh(x) is a decreasing invariant solution, ν = 1.6ε sin(2πx) — the
perturbation. Asymptotics at t → ∞ coincides with µ, see fig. 1. The dissipation reigns in
and no catastrophe develops. The explanation can be seen in fig. 2 where the typical graph
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of integrand ν2x + µxν
2 in (17) is given at t = 2; clearly ⟨νt⟩|L2 < 0.

(ii) For the same equation choose another IVBP: u(1, t) = −ε2 tanh(1) + ε((sech2(1)),
u(0, t) = ε, u(x, 0) = −ε2 tanh(x) + ε((sech2(x)). The initial profile u(x, 0) gives an
impression of being in vicinity of the invariant solution −ε2 tanh(x) as it is modestly
perturbed by ε((sech2(x)). In fact it tends to another (decreasing) invariant solution
2.06ε2 tanh(−2.06x+ 2.1), see fig. 3.

3.2. Catastrophe
As it is known, for a general quasilinear transport equation (x ∈ R)

wt + f(w)wx = 0 (18)

the moment of gradient catastrophe can be defined as follows. Let w = φ(x) be an initial profile.
The solution of this problem may be given in a parametric form w = φ(ξ), x = ξ+F(ξ)t where
F = f(φ(ξ)). The characteristics of the form x = ξ + F(ξ)t intersect in the case φ′(ξ) < 0 thus
resulting in many-valued w (the tilting of a wave or a gradient catastrophe). If the inequality
holds on a finite interval there exist a minimal value of time, tc, when this problem arises. One
may determine tc by the formula tc = −1/F ′(ξc) where |F(ξc)| = max |F ′(ξ)| on the interval
[α, β] while F ′(ξ) < 0.

Figure 4. Start of gradient catastrophe at
tc ≈ 0.67. Dash line is the initial profile
sech2(x− 1). n=1

Figure 5. Multi-oscillations move to a
Heaviside-type break tanh2(1) − tanh2(9) at
x = 10; t ≈ 8.

We demonstrate this gradient catastrophe to be inherited by Burgers-like equations for some
initial profiles, with modest dissipative effects added to a model (18); (cf [2, 1] dealing with
a formation of dispersive shocks in a different class of extension of (18), namely Hamiltonian
dispersive regularizations of (18) including KdV-likes and Kawahara equations.

In a complex environment of a finite interval combined with an added dissipation for the
Burgers-like equation the catastrophe may be delayed or occur earlier, still the main features
remain. We begin with the Burgers equation ut(x, t) = ε2uxx(x, t)− 2u(x, t)ux(x, t), with IVBP
{u(x, 0) = sech2(x − 1), u(0, t) = sech2(1), u(10, t) = sech2(9)} and ε = 0.02. The initial peak
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Figure 6. Earlier stage of multi-oscillations
at tc ≈ 0.2. Dash line is the initial profile
sech2(x− 9). n=1

Figure 7. Multi-oscillations move to a
Heaviside-type break − tanh2(1)+tanh2(9) at
x = 10; t ≈ 4.7.

moves to the right from the far left of the interval, so the moment tc nearly coincides with that
for a whole line. The ensuing multi-oscillating process results in a Heaviside-type break between
boundary values at the right end of the interval, fig. 4, 5. Note that constants are invariant
solutions.

In another example we change IVBP of the previous problem for {u(x, 0) = sech2(x −
9), u(0, t) = sech2(9), u(10, t) = sech2(1)}. Here, the right end of the interval being nearer,
the catastrophe begins earlier, at t ≈ 0.1. At t = 0.2 we see multi-oscillations fig. 6, gradually
developing into a breakup, fig. 7.

Now take the generalized Burgers equation ut(x, t) = ε2uxx(x, t)−2u2(x, t)ux(x, t) and IVBP
{u(x, 0) = sech2(x − 1), u(0, t) = sech2(1), u(10, t) = sech2(9)} and ε = 0.02 as in the first
example. The gradient catastrophe starts at t = 0.45 in agreement with characteristics method)
and likewise develops into a breakup, fig. 8 and 9.

This is not a behavior specific for the sech2-type initial data. In yet one more example change
the IVBP of the previous example for u(x, 0) = −0.01x2 + 0.9, u(0, t) = 0.9, u(10, t) = −0.1.
The overall picture changes only slightly, fig. 10, though the catastrophe starts at t = 3.9, much
later than t = 1, 9 predicted by the characteristics method.

3.3. Stabilization and/or frozen multi-oscillation
In some cases the evolution of the initial profile results early and clearly not in an invariant
solution from the list (4), see for example fig. 11 with IVBP

{
u(x, 0) = −kε2 tanh(k)(2x4 − x2) ,

u(0, t) = 0, u(1, t) = −kε2 tanh(k)
}
, for ε = 0.05; k = 50.

The effect is stable, as the final profile (solid line) in this example does not change if the initial
one is perturbated, provided boundary data is the same: identical asymptotics are obtained for
u(x, 0) = −kε2 tanh(k)x or −kε2 tanh(k)x2 (note that the invariant solution with the same
boundary values is µ(x) = −kε2 tanh(kx)). The stabilization may be rather quick. The graph

of L2-estimate for the difference ν,
∫ 1
0 (u(s, t)− µ(s))2 ds is presented in fig. 13.

The reason for his effect is not entirely clear. Calculus of variations suggests to seek such a
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Figure 8. Start of gradient catastrophe at
tc ≈ 0.45. Dash line is the initial profile
sech2(x− 1). n=2

Figure 9. Multi-oscillations move to a
Heaviside-type break − tanh2(1)+tanh2(9) at
x = 10; t ≈ 0.8.

Figure 10. Multi-oscillations move to a
Heaviside-type break at x = 10; t ≈ 4.6.Dash
line is the initial profile −0.01x2 + 0.9. n=2

Figure 11. Initial profile (dots line)
−kε2 tanh(k)(2x4 − x2), u(0, t) = 0, u(1, t) =
−kε2 tanh(k). Asymptotic limit (solid) and
the invariant solution (dash) −kε2 tanh(kx);
ε = 0.05, k = 50. n=1

stationary point as an extremal of the functional (17).

∂

∂τ

∣∣∣∣
τ=0

∫ b

a

(
(ν + τh)2x − µx(ν + τh)2

)
dx = 0. (19)
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Figure 12. Enlarged part of fig. 11.
Piecewise-smooth difference ν(x); t = 20.

Figure 13. L2-estimate of difference
between invariant µ(x) = −αε2 tanh(αx) and
stabilizing multi-oscillating solution of fig. 11,
12; n=1.

It follows
νxx + µxν = 0. (20)

It is hard to compare the numeric extremal presented on figures 11 to solutions of (20) since
these solutions are hard to obtain by numeric methods. The obstacle is that the decreasing
solutions of the Burgers equation are of the form µ(x) = −k tanh(kx + c) and the potential of
the linear problem (20), µx, is numerically finite. Some of solutions of (20) are discontinuous
(eg, the real part of complex solution of (20) is both discontinuous and multi-oscillating in some
cases).

This discontinuity can generate a chaos on the numeric graph and may be a possible reason
of a failed smoothness of ν(x), as presented on figure 12. The graph is composed with parts of
different invariant solutions.

The exact mechanism for formations of such exotic solutions is yet to be described in detail;
it will be published elsewhere.
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