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Abstract. We present here a rigorous proof of the quasi steady state approximation in the
context of a system of reaction-diffusion equations coming out of a typical chain of irreversible
chemical reactions.

1. Introduction
The quasi steady state approximation (or QSSA) is a standard procedure in the study of chemical
reactions kinetics allowing to eliminate from the equations the evolution of the species having a
short time of existence w.r.t. the typical time of reaction of the chain. It consists in neglecting
the speed of variation of the unstable species (that is, to replace it by 0). One can find in [15]
a detailed description of the QSSA and the assumptions underlying its validity.

This approximation has been studied extensively at the mathematical level in the case when
the spatial structure is not taken into account (that is, the chemistry is modeled by ODEs
satisfied by the global concentrations of the species), see for instance [15, 2, 8, 14] and the
references therein.

Our goal is to study the rigorous validity of the QSSA when the evolution of the species is
described by reaction diffusion PDEs (each species having its own diffusion). In order to do so,
we intend to use methods based on Lyapounov functionals and duality lemmas. Such a study
was performed in [1] and in [5] in the case of a typical system of reversible equations. We wish
in this paper to study the possible extensions of those methods in the context of a typical chain
of irreversible reactions, where the entropy used in [1] is not available anymore. The analysis
that we propose is in fact closer to that of [5] (the results that we provide could probably at
least partly be recovered by following the arguments of [5], we propose however slightly different
arguments).

Note that the QSSA has also been investigated in [16] in cases when there is a bounded
invariant region for the unknowns. Finally the fast reaction asymptotics is another interesting
problem for reaction-diffusion PDEs, which shares common features with the QSSA. It has been
studied for example in [9, 6] for irreversible reactions, and in [3, 4] for reversible ones.
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Here, we are interested in a typical chain of chemical reactions, such as A+B −→ C +D,
D + E −→ A+ C,
C + E −→ A,

(1)

or its simpler version  A+B −→ C +D,
D + E −→ A+ C,
C −→ A.

(2)

We also introduce the corresponding systems of reaction diffusion for unknowns a := a(t, x) ≥
0, b := b(t, x) ≥ 0, c := c(t, x) ≥ 0, d := d(t, x) ≥ 0 and e := e(t, x) ≥ 0, which represent the
concentrations at time t ∈ R+ and point x ∈ Ω (Ω being a bounded smooth open subset of RN ,
N ∈ N∗) of the species A, B, C, D and E.

For the chain (1), it writes

∂ta− d1 ∆xa = −k1 a b+ k2 d e+ k3 c e, (3)

∂tb− d2 ∆xb = −k1 a b, (4)

∂tc− d3 ∆xc = k1 a b+ k2 d e− k3 c e, (5)

∂td− d4 ∆xd = k1 a b− k2 d e, (6)

∂te− d5 ∆xe = −k2 d e− k3 c e, (7)

together with Neumann boundary conditions (for all x ∈ ∂Ω)

∇xa · n(x) = 0, ∇xb · n(x) = 0, ∇xc · n(x) = 0, ∇xd · n(x) = 0, ∇xe · n(x) = 0, (8)

and initial data

a(0, ·) = ain, b(0, ·) = bin, c(0, ·) = cin, d(0, ·) = din, e(0, ·) = ein. (9)

The parameters d1, .., d5 are the diffusion rates of the species A, .., E, and k1, .., k3 are the rates
of the three reactions in the chain.

In the simpler chain (2), we get

∂ta− d1 ∆xa = −k1 a b+ k2 d e+ k3 c, (10)

∂tb− d2 ∆xb = −k1 a b, (11)

∂tc− d3 ∆xc = k1 a b+ k2 d e− k3 c, (12)

∂td− d4 ∆xd = k1 a b− k2 d e, (13)

∂te− d5 ∆xe = −k2 d e− k3 c, (14)

still with boundary and initial conditions (8), (9).

We now suppose that C is unstable (w.r.t. other species). This amounts to assume that
k3 >> k1, k2, so that we take the notation k3 = 1/ε. The QSSA predicts that (in the limit
ε → 0) the concentration c should be of order ε, provided that cin(x) = 0 for all x ∈ Ω (so
that no initial layer appears). In order to state a rigorous result of convergence, we introduce
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explicitly the dependence of the concentrations w.r.t. ε, and get for the chain (1):

∂taε − d1 ∆xaε = −k1 aε bε + k2 dε eε +
k3

ε
cε eε, (15)

∂tbε − d2 ∆xbε = −k1 aε bε, (16)

∂tcε − d3 ∆xcε = k1 aε bε + k2 dε eε −
k3

ε
cε eε, (17)

∂tdε − d4 ∆xdε = k1 aε bε − k2 dε eε, (18)

∂teε − d5 ∆xeε = −k2 dε eε −
k3

ε
cε eε, (19)

together with Neumann boundary conditions (for all x ∈ ∂Ω)

∇xaε ·n(x) = 0, ∇xbε ·n(x) = 0, ∇xcε ·n(x) = 0, ∇xdε ·n(x) = 0, ∇xeε ·n(x) = 0, (20)

and initial data

aε(0, ·) = ain, bε(0, ·) = bin, cε(0, ·) = 0, dε(0, ·) = din, eε(0, ·) = ein. (21)

In the case of the simpler chain (2), eq. (15) – (19) are replaced by

∂taε − d1 ∆xaε = −k1 aε bε + k2 dε eε +
k3

ε
cε, (22)

∂tbε − d2 ∆xbε = −k1 aε bε, (23)

∂tcε − d3 ∆xcε = k1 aε bε + k2 dε eε −
k3

ε
cε, (24)

∂tdε − d4 ∆xdε = k1 aε bε − k2 dε eε, (25)

∂teε − d5 ∆xeε = −k2 dε eε −
k3

ε
cε, (26)

while the initial and boundary conditions (20) and (21) are left unchanged.

We start by stating a Theorem which shows that the QSSA is indeed rigorously justified in
the case of the simplified system (22) – (26).

Theorem 1: Let Ω be a smooth (C2), bounded and connected open subset of RN (N ∈ N∗),
let d1, .., d5 > 0, k1, .., k3 > 0, and let ain,..,ein be initial data in C2(Ω,R+), compatible with
the Neumann boundary condition (20). Then, for any ε > 0, there exists a unique global
strong (C2(R+×Ω;R+)) solution (aε, .., eε) to the system (22) – (26) with initial and boundary
conditions (20) and (21). Moreover, this solution (aε, .., eε) converges in ∩p∈[1,+∞[L

p
loc(R+ × Ω)

strong towards (a, b, 0, d, e), where (a, b, d, e) is the unique global strong (C2(R+ × Ω;R+))
solution of the following limit system:

∂ta− d1∆xa = 2 k2 d e, (27)

∂tb− d2 ∆xb = −k1 a b, (28)

∂td− d4 ∆xd = k1 a b− k2 d e, (29)

∂te− d5∆xe = −2 k2 d e− k1 a b, (30)

together with initial and boundary conditions (20) and (21) [except those for c].

As expected in the QSSA framework, cε converges to 0 (that is, the unstable species has
a very small concentration). Moreover, the limit system is closed thanks to the convergence
towards 0 of the variation of cε, that is k1 aε bε + k2 dε eε − k3

ε cε → 0.
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In the case of the full system, the QSSA can only be partially proven, in the sense that
instead of getting c = 0 in the limit, we only get c e = 0.

We end up in fact with the following Theorem:

Theorem 2: Let Ω be a smooth (C2), bounded and connected open subset of RN (N ∈ N∗),
let d1, .., d5 > 0, k1, .., k3 > 0, and let ain,..,ein be initial data in C2(Ω,R+), compatible with
the Neumann boundary condition (20). Then, for any ε > 0, there exists a unique global
strong (C2(R+×Ω;R+)) solution (aε, .., eε) to the system (15) – (19) with initial and boundary
conditions (20) and (21). Moreover, this solution (aε, .., eε) converges up to extraction of a
subsequence in ∩p∈[1,+∞[L

p
loc(R+×Ω) strong towards (a, b, c, d, e), where (a, b, c, d, e) is a global

weak solution of the following limit system:

∂t(a+ c)−∆x(d1 a+ d3 c) = 2 k2 d e, (31)

∂tb− d2 ∆xb = −k1 a b, (32)

c e = 0, (33)

∂td− d4 ∆xd = k1 a b− k2 d e, (34)

∂t(e− c)−∆x(d5 e− d3 c) = −2 k2 d e− k1 a b. (35)

together with initial and boundary conditions (20) and (21) [except those for c].

Note that if we knew that c = 0 in the above system, we would be able to conclude that the
convergence of the whole sequence holds, since there would be uniqueness of a (weak) solution
of the system. This identity seems however difficult to prove without extra assumptions. As can
be seen, the QSSA is not completely proven in this case (more precisely, it is proven only in the
regions where e 6= 0: no information about those regions is available unfortunately).

Note also that in the above Theorems, we made no effort to give optimal conditions on the
initial data (part of the conclusions would hold even in if the initial data were only continuous,
or even belonged to some well chosen Lp space. Also the convergences (of aε towards a, etc.)
are shown to hold a.e., but part of them in fact hold in (well chosen) Sobolev spaces.

Finally we did not try here to study the case when the unstable species has a non zero initial
datum. In that case, an initial layer should appear, which needs a specific treatment (cf. [5]).

The rest of this paper is devoted to the Proof of Theorem 1 (section 2) and Theorem 2
(section 3).

2. Proof of the Theorem for the simplified model
We begin here the

Proof of Theorem 1: Let us first briefly recall how (for any ε > 0), existence and uniqueness
of a strong (smooth, nonnegative) solution to system (22) - (26) can be obtained. First, local
(in time) solutions are proven to exist thanks to an iterative method like in [10].

Then, this solution is shown to be global (in time) thanks to a continuation process using a
priori estimates. We recall here the necessary estimates. First, thanks to the maximum principle,
it is clear that (for all t ≥ 0 such that the solution exists)

0 ≤ eε(t, x) ≤ ||ein||L∞(Ω), 0 ≤ bε(t, x) ≤ ||bin||L∞(Ω). (36)

Observing that

∂t(aε + cε + 2 eε)−∆x(d1 aε + d3 cε + 2 d5 eε) = −2
k3

ε
cε eε ≤ 0,
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and
∂t(bε + dε)−∆x(d2 bε + d4 dε) = −k2 dε eε ≤ 0,

we see using the duality method (cf. [12], [11]) that (for any T > 0 such that the solution exists)

||aε||L2([0,T ]×Ω) ≤ CT , ||cε||L2([0,T ]×Ω) ≤ CT , ||dε||L2([0,T ]×Ω) ≤ CT ,

where CT > 0 does not depend on ε (in fact it only depends on the L2 bounds of the initial
data ain, bin, din, ein, and of the the diffusion rates d1, .., d5 > 0). It would even be possible to
replace L2 in the estimates above by L2+δ for some δ > 0 using the arguments of [7], but we
shall show in the sequel that an even better estimate holds.

Indeed, a more careful examination of the duality method shows that (cf. [13])

||dε||Lp([0,T ]×Ω) ≤ CT (37)

for all p 6=∞. Also, as a consequence

||dε eε||Lp([0,T ]×Ω) ≤ CT . (38)

Then, writing
∂t(aε + eε)−∆x(d1 aε + d5 eε) = −k1 aε bε ≤ 0,

and using again the duality arguments of [13], we end up with

||aε||Lp([0,T ]×Ω) ≤ CT (39)

for all p 6=∞.
Finally, observing that

∂t(aε + cε)−∆x(d1 aε + d3 cε) = 2 k2 dε eε,

and using estimate (38) together with (one last time) the duality arguments of [13], we see that

||cε||Lp([0,T ]×Ω) ≤ CT (40)

for all p 6=∞. Note that all those estimates are independent on ε > 0.

As a consequence of the previous estimates (the second inequality having already been stated
in (38)),

||aε bε||Lp([0,T ]×Ω) ≤ CT , ||dε eε||Lp([0,T ]×Ω) ≤ CT , (41)

and
||cε/ε||Lp([0,T ]×Ω) ≤ CT /ε, (42)

so that thanks to the properties of the heat equation, and eq. (22) - (26),

||aε, bε, cε, dε, eε||L∞([0,T ]×Ω) ≤ CT,ε. (43)

According to [10], existence (for a given ε > 0) of a global (locally bounded) solution to system
(22) - (26) holds. Then, the smoothness of this solution is a direct consequence of bootstraps
arguments using the heat kernel properties, and uniqueness also holds (cf. also [10]).

We now turn to the proof of the QSSA. Note that estimates (43) cannot be used since the
constant appearing there is not ε-independent, whereas estimates (36) – (40) are available since
they are ε-independent.
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We observe that integrating eq. (26) over [0, T ]× Ω,∫
Ω
eε(T, x) dx+

k3

ε

∫ T

0

∫
Ω
cε(t, x) dxdt ≤

∫
Ω
ein(x) dx.

In other words,
||cε/ε||L1([0,T ]×Ω) ≤ CT . (44)

which, together with estimate (40), entails the convergence towards 0 of cε in ∩p∈[1,+∞[L
p
loc(R+×

Ω) strong.
Then, thanks to estimates (36), (37) and (39), we see that up to the extraction of a

subsequence, aε ⇀ a, dε ⇀ d in ∩p∈[1,+∞[L
p
loc(R+ × Ω) weak (where a, d are some elements

of ∩p∈[1,+∞[L
p
loc(R+ × Ω)), and bε ⇀ b, eε ⇀ e in L∞(R+ × Ω) weak (where b, e are some

elements of L∞(R+ × Ω)).

Using estimate (44) together with (41) and eq. (22) - (26), and remembering the compactness
properties of the heat equation, we see that the convergences above also hold for a.e. t, x, and
therefore in ∩p∈[1,+∞[L

p
loc(R+ × Ω) strong.

As a consequence, the sequence aε bε converges (up to extraction of a subsequence) towards
a b in ∩p∈[1,+∞[L

p
loc(R+×Ω) and the sequence dε eε converges (up to extraction of a subsequence)

towards d e in ∩p∈[1,+∞[L
p
loc(R+ × Ω).

We can therefore pass to the limit in the sense of distributions (more precisely, with test
functions taken in C∞c (R+ × Ω))) in eq. (23) and (25) and get eq. (28) and (29) in the sense
of distributions (more precisely, those equations are satisfied in the weak sense including the
boundary condition (8) [for b and d] and the initial data (9) [for b and d]; this means once again
that the test functions are taken in C∞c (R+ × Ω)).

We then write the result of the sum of eq. (22) and eq. (24) on one hand, and the result of
the difference between eq. (26) and eq. (24) on the other hand:

∂t(aε + cε)−∆x(d1 aε + d3 cε) = 2 k2 dε eε, (45)

∂t(eε − cε)−∆x(d5 eε − d3 cε) = −2 k2 dε eε − k1 aε bε. (46)

We can also pass to the limit in this equation in the sense of distributions (once again, more
precisely, with test functions taken in C∞c (R+ × Ω)), and get eq. (27) and (30) in the sense
of distributions (more precisely, those equations are satisfied in the weak sense including the
boundary condition (8) [for a and e] and the initial data (9) [for a and e]; this means once again
that the test functions are taken in C∞c (R+ × Ω)).

In this way, we end up with a weak solution of the limit system (27) – (30) together with initial
and boundary conditions (20) and (21) [except those for c]. According to the method described
in [10] for example, we know that this solution is the unique strong (smooth, nonnegative)
solution of the system, so that the whole family aε, bε, cε, dε, eε (and not just a subsequence)
converges towards a, b, 0, d, e.

This concludes the Proof of Theorem 1. �

3. Proof of the Theorem for the complete model
We begin here the

Proof of Theorem 2: We observe that estimates (36) – (41) still hold for the (local in time)
solution of system (15) - (19), the proof being identical to the one of the previous section.
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We now replace estimate (42) by

||cε eε/ε||Lp([0,T ]×Ω) ≤ CT /ε, (47)

so that thanks to the properties of the heat equation, and eq. (15) - (19), estimates (43) hold.
Using then the results of [10], existence (for a given ε > 0) of a global in time (locally bounded)
solution to system (15) - (19) holds. We recall that the smoothness of this solution is a direct
consequence of bootstraps arguments using the heat kernel properties, and that uniqueness also
holds (cf. also [10]).

We now investigate the validity of the QSSA for this chain reaction. We integrate eq. (19)
over [0, T ]× Ω, and end up with∫

Ω
eε(T, x) dx+

k3

ε

∫ T

0

∫
Ω
cε(t, x) eε(t, x) dxdt ≤

∫
Ω
ein(x) dx.

Then,
||cε eε/ε||L1([0,T ]×Ω) ≤ CT , (48)

which, together with estimates (36) and (40), entails the convergence towards 0 of cε eε in
∩p∈[1,+∞[L

p
loc(R+ × Ω) strong.

Using as in the previous section estimates (36) – (39), but also (40), we see that up to the
extraction of a subsequence, aε ⇀ a, cε ⇀ c, dε ⇀ d in ∩p∈[1,+∞[L

p
loc(R+×Ω) weak (where a, c,

d are some elements of ∩p∈[1,+∞[L
p
loc(R+×Ω)), and bε ⇀ b, eε ⇀ e in L∞(R+×Ω) weak (where

b, e are some elements of L∞(R+ × Ω)).

Using now estimate (48) together with (41) and eq. (15) - (19), and remembering the
compactness properties of the heat equation, we see that the convergences above also hold
for a.e. t, x, and therefore in ∩p∈[1,+∞[L

p
loc(R+ × Ω) strong.

As in the previous section, we therefore see that the sequence aε bε converges (up to extraction
of a subsequence) towards a b in ∩p∈[1,+∞[L

p
loc(R+ × Ω) and that the sequence dε eε converges

(up to extraction of a subsequence) towards d e in ∩p∈[1,+∞[L
p
loc(R+ × Ω).

We now pass to the limit in the system (15) - (19). Using estimate (48) and Fatou’s lemma,
we first see that c e = 0, so that (33) holds.

We can also pass to the limit in the sense of distributions (more precisely, with test functions
taken in C∞c (R+×Ω))) in eq. (16) and (18) and get eq. (32) and (34) in the sense of distributions
(more precisely, those equations are satisfied in the weak sense including the boundary condition
(8) [for b and d] and the initial data (9) [for b and d]; this means once again that the test functions
are taken in C∞c (R+ × Ω)).

We then write the result of the sum of eq. (15) and eq. (17) on one hand, and the result of
the difference between eq. (19) and eq. (17) on the other hand:

∂t(aε + cε)−∆x(d1 aε + d3 cε) = 2 k2 dε eε, (49)

∂t(eε − cε)−∆x(d5 eε − d3 cε) = −2 k2 dε eε − k1 aε bε. (50)

We can also pass to the limit in these equations in the sense of distributions (once again,
more precisely, with test functions taken in C∞c (R+ × Ω)), and get eq. (31) and (35) in the
sense of distributions (more precisely, those equations are satisfied in the weak sense including
the boundary condition (8) [for a and e] and the initial data (9) [for a and e]; this means once
again that the test functions are taken in C∞c (R+ × Ω)).
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In this way, we end up with a weak solution of the limit system (31) – (35) together with
initial and boundary conditions (20) and (21) [except those for c].

Note however that we have no information on the smoothness of the solutions to system
(31) – (35) since it is not written under the standard parabolic form. We also do not know if
uniqueness holds for this system, so that we cannot prove that the whole family aε, bε, cε, dε, eε
converges towards a, b, c, d, e.

This concludes the Proof of Theorem 2. �
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