OPEN ACCESS

About the Quasi Steady State Approximation for a Reaction Diffusion System Describing a Chain of Irreversible Chemical Reactions

To cite this article: F Conforto and L Desvillettes 2014 J. Phys.: Conf. Ser. 482012008

You may also like

6th International Workshop on New Computational Methods for Inverse Problems

Synthesis, optical properties and photostability of novel fluorinated organic-inorganic hybrid $\left(R-\mathrm{NH}_{3}\right)_{2} \mathrm{PbX}_{4}$ semiconductors Y Wei, P Audebert, L Galmiche et al.

Multiple model updating using the finite element method over a polynomial algebra C Gouttebroze, F Louf and L Champaney

View the article online for updates and enhancements

About the Quasi Steady State Approximation for a Reaction Diffusion System Describing a Chain of Irreversible Chemical Reactions

F Conforto ${ }^{1}$ and L Desvillettes ${ }^{2}$
${ }^{1}$ Dept. of Mathematics and Computer Science, University of Messina
V.le F. Stagno d'Alcontres, 31, 98166 Messina, Italy
${ }^{2}$ CMLA, ENS Cachan, CNRS
61 Av. du Pdt. Wilson, 94235 Cachan Cedex, France
E-mail: ${ }^{1}$ fiammetta.conforto@unime.it, ${ }^{2}$ desville@cmla.ens-cachan.fr

Abstract

We present here a rigorous proof of the quasi steady state approximation in the context of a system of reaction-diffusion equations coming out of a typical chain of irreversible chemical reactions.

1. Introduction

The quasi steady state approximation (or QSSA) is a standard procedure in the study of chemical reactions kinetics allowing to eliminate from the equations the evolution of the species having a short time of existence w.r.t. the typical time of reaction of the chain. It consists in neglecting the speed of variation of the unstable species (that is, to replace it by 0). One can find in [15] a detailed description of the QSSA and the assumptions underlying its validity.

This approximation has been studied extensively at the mathematical level in the case when the spatial structure is not taken into account (that is, the chemistry is modeled by ODEs satisfied by the global concentrations of the species), see for instance $[15,2,8,14]$ and the references therein.

Our goal is to study the rigorous validity of the QSSA when the evolution of the species is described by reaction diffusion PDEs (each species having its own diffusion). In order to do so, we intend to use methods based on Lyapounov functionals and duality lemmas. Such a study was performed in [1] and in [5] in the case of a typical system of reversible equations. We wish in this paper to study the possible extensions of those methods in the context of a typical chain of irreversible reactions, where the entropy used in [1] is not available anymore. The analysis that we propose is in fact closer to that of [5] (the results that we provide could probably at least partly be recovered by following the arguments of [5], we propose however slightly different arguments).

Note that the QSSA has also been investigated in [16] in cases when there is a bounded invariant region for the unknowns. Finally the fast reaction asymptotics is another interesting problem for reaction-diffusion PDEs, which shares common features with the QSSA. It has been studied for example in $[9,6]$ for irreversible reactions, and in $[3,4]$ for reversible ones.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI

Here, we are interested in a typical chain of chemical reactions, such as

$$
\left\{\begin{array}{llc}
A+B & \longrightarrow & C+D \tag{1}\\
D+E & \longrightarrow & A+C \\
C+E & \longrightarrow & A,
\end{array}\right.
$$

or its simpler version

$$
\left\{\begin{array}{clc}
A+B & \longrightarrow & C+D, \tag{2}\\
D+E & \longrightarrow & A+C, \\
C & \longrightarrow & A .
\end{array}\right.
$$

We also introduce the corresponding systems of reaction diffusion for unknowns $a:=a(t, x) \geq$ $0, b:=b(t, x) \geq 0, c:=c(t, x) \geq 0, d:=d(t, x) \geq 0$ and $e:=e(t, x) \geq 0$, which represent the concentrations at time $t \in \mathbb{R}_{+}$and point $x \in \Omega\left(\Omega\right.$ being a bounded smooth open subset of \mathbb{R}^{N}, $N \in \mathbb{N}^{*}$) of the species A, B, C, D and E.

For the chain (1), it writes

$$
\begin{align*}
& \partial_{t} a-d_{1} \Delta_{x} a=-k_{1} a b+k_{2} d e+k_{3} c e, \tag{3}\\
& \partial_{t} b-d_{2} \Delta_{x} b=-k_{1} a b, \tag{4}\\
& \partial_{t} c-d_{3} \Delta_{x} c=k_{1} a b+k_{2} d e-k_{3} c e, \tag{5}\\
& \partial_{t} d-d_{4} \Delta_{x} d=k_{1} a b-k_{2} d e, \tag{6}\\
& \partial_{t} e-d_{5} \Delta_{x} e=-k_{2} d e-k_{3} c e, \tag{7}
\end{align*}
$$

together with Neumann boundary conditions (for all $x \in \partial \Omega$)

$$
\begin{equation*}
\nabla_{x} a \cdot n(x)=0, \quad \nabla_{x} b \cdot n(x)=0, \quad \nabla_{x} c \cdot n(x)=0, \quad \nabla_{x} d \cdot n(x)=0, \quad \nabla_{x} e \cdot n(x)=0, \tag{8}
\end{equation*}
$$

and initial data

$$
\begin{equation*}
a(0, \cdot)=a_{i n}, \quad b(0, \cdot)=b_{i n}, \quad c(0, \cdot)=c_{i n}, \quad d(0, \cdot)=d_{i n}, \quad e(0, \cdot)=e_{i n} . \tag{9}
\end{equation*}
$$

The parameters $d_{1}, . ., d_{5}$ are the diffusion rates of the species A, \ldots, E, and $k_{1}, . ., k_{3}$ are the rates of the three reactions in the chain.

In the simpler chain (2), we get

$$
\begin{align*}
& \partial_{t} a-d_{1} \Delta_{x} a=-k_{1} a b+k_{2} d e+k_{3} c, \tag{10}\\
& \partial_{t} b-d_{2} \Delta_{x} b=-k_{1} a b, \tag{11}\\
& \partial_{t} c-d_{3} \Delta_{x} c=k_{1} a b+k_{2} d e-k_{3} c, \tag{12}\\
& \partial_{t} d-d_{4} \Delta_{x} d=k_{1} a b-k_{2} d e, \tag{13}\\
& \partial_{t} e-d_{5} \Delta_{x} e=-k_{2} d e-k_{3} c, \tag{14}
\end{align*}
$$

still with boundary and initial conditions (8), (9).
We now suppose that C is unstable (w.r.t. other species). This amounts to assume that $k_{3} \gg k_{1}, k_{2}$, so that we take the notation $k_{3}=1 / \varepsilon$. The QSSA predicts that (in the limit $\varepsilon \rightarrow 0$) the concentration c should be of order ε, provided that $c_{i n}(x)=0$ for all $x \in \Omega$ (so that no initial layer appears). In order to state a rigorous result of convergence, we introduce
explicitly the dependence of the concentrations w.r.t. ε, and get for the chain (1):

$$
\begin{align*}
& \partial_{t} a_{\varepsilon}-d_{1} \Delta_{x} a_{\varepsilon}=-k_{1} a_{\varepsilon} b_{\varepsilon}+k_{2} d_{\varepsilon} e_{\varepsilon}+\frac{k_{3}}{\varepsilon} c_{\varepsilon} e_{\varepsilon}, \tag{15}\\
& \partial_{t} b_{\varepsilon}-d_{2} \Delta_{x} b_{\varepsilon}=-k_{1} a_{\varepsilon} b_{\varepsilon}, \tag{16}\\
& \partial_{t} c_{\varepsilon}-d_{3} \Delta_{x} c_{\varepsilon}=k_{1} a_{\varepsilon} b_{\varepsilon}+k_{2} d_{\varepsilon} e_{\varepsilon}-\frac{k_{3}}{\varepsilon} c_{\varepsilon} e_{\varepsilon}, \tag{17}\\
& \partial_{t} d_{\varepsilon}-d_{4} \Delta_{x} d_{\varepsilon}=k_{1} a_{\varepsilon} b_{\varepsilon}-k_{2} d_{\varepsilon} e_{\varepsilon}, \tag{18}\\
& \partial_{t} e_{\varepsilon}-d_{5} \Delta_{x} e_{\varepsilon}=-k_{2} d_{\varepsilon} e_{\varepsilon}-\frac{k_{3}}{\varepsilon} c_{\varepsilon} e_{\varepsilon}, \tag{19}
\end{align*}
$$

together with Neumann boundary conditions (for all $x \in \partial \Omega$)

$$
\begin{equation*}
\nabla_{x} a_{\varepsilon} \cdot n(x)=0, \quad \nabla_{x} b_{\varepsilon} \cdot n(x)=0, \quad \nabla_{x} c_{\varepsilon} \cdot n(x)=0, \quad \nabla_{x} d_{\varepsilon} \cdot n(x)=0, \quad \nabla_{x} e_{\varepsilon} \cdot n(x)=0 \tag{20}
\end{equation*}
$$

and initial data

$$
\begin{equation*}
a_{\varepsilon}(0, \cdot)=a_{i n}, \quad b_{\varepsilon}(0, \cdot)=b_{i n}, \quad c_{\varepsilon}(0, \cdot)=0, \quad d_{\varepsilon}(0, \cdot)=d_{i n}, \quad e_{\varepsilon}(0, \cdot)=e_{i n} \tag{21}
\end{equation*}
$$

In the case of the simpler chain (2), eq. (15) - (19) are replaced by

$$
\begin{align*}
& \partial_{t} a_{\varepsilon}-d_{1} \Delta_{x} a_{\varepsilon}=-k_{1} a_{\varepsilon} b_{\varepsilon}+k_{2} d_{\varepsilon} e_{\varepsilon}+\frac{k_{3}}{\varepsilon} c_{\varepsilon} \tag{22}\\
& \partial_{t} b_{\varepsilon}-d_{2} \Delta_{x} b_{\varepsilon}=-k_{1} a_{\varepsilon} b_{\varepsilon} \tag{23}\\
& \partial_{t} c_{\varepsilon}-d_{3} \Delta_{x} c_{\varepsilon}=k_{1} a_{\varepsilon} b_{\varepsilon}+k_{2} d_{\varepsilon} e_{\varepsilon}-\frac{k_{3}}{\varepsilon} c_{\varepsilon} \tag{24}\\
& \partial_{t} d_{\varepsilon}-d_{4} \Delta_{x} d_{\varepsilon}=k_{1} a_{\varepsilon} b_{\varepsilon}-k_{2} d_{\varepsilon} e_{\varepsilon} \tag{25}\\
& \partial_{t} e_{\varepsilon}-d_{5} \Delta_{x} e_{\varepsilon}=-k_{2} d_{\varepsilon} e_{\varepsilon}-\frac{k_{3}}{\varepsilon} c_{\varepsilon} \tag{26}
\end{align*}
$$

while the initial and boundary conditions (20) and (21) are left unchanged.
We start by stating a Theorem which shows that the QSSA is indeed rigorously justified in the case of the simplified system (22) - (26).

Theorem 1: Let Ω be a smooth $\left(C^{2}\right)$, bounded and connected open subset of $\mathbb{R}^{N}\left(N \in \mathbb{N}^{*}\right)$, let $d_{1}, . ., d_{5}>0, k_{1}, . ., k_{3}>0$, and let $a_{i n}, . ., e_{i n}$ be initial data in $C^{2}\left(\bar{\Omega}, \mathbb{R}_{+}\right)$, compatible with the Neumann boundary condition (20). Then, for any $\varepsilon>0$, there exists a unique global strong $\left(C^{2}\left(\mathbb{R}_{+} \times \bar{\Omega} ; \mathbb{R}_{+}\right)\right)$solution $\left(a_{\varepsilon}, . ., e_{\varepsilon}\right)$ to the system (22)-(26) with initial and boundary conditions (20) and (21). Moreover, this solution ($a_{\varepsilon}, . ., e_{\varepsilon}$) converges in $\cap_{p \in[1,+\infty}\left[L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega\right)\right.$ strong towards $(a, b, 0, d, e)$, where (a, b, d, e) is the unique global strong $\left(C^{2}\left(\mathbb{R}_{+} \times \bar{\Omega} ; \mathbb{R}_{+}\right)\right)$ solution of the following limit system:

$$
\begin{align*}
& \partial_{t} a-d_{1} \Delta_{x} a=2 k_{2} d e, \tag{27}\\
& \partial_{t} b-d_{2} \Delta_{x} b=-k_{1} a b, \tag{28}\\
& \partial_{t} d-d_{4} \Delta_{x} d=k_{1} a b-k_{2} d e, \tag{29}\\
& \partial_{t} e-d_{5} \Delta_{x} e=-2 k_{2} d e-k_{1} a b, \tag{30}
\end{align*}
$$

together with initial and boundary conditions (20) and (21) [except those for c].
As expected in the QSSA framework, c_{ε} converges to 0 (that is, the unstable species has a very small concentration). Moreover, the limit system is closed thanks to the convergence towards 0 of the variation of c_{ε}, that is $k_{1} a_{\varepsilon} b_{\varepsilon}+k_{2} d_{\varepsilon} e_{\varepsilon}-\frac{k_{3}}{\varepsilon} c_{\varepsilon} \rightarrow 0$.

In the case of the full system, the QSSA can only be partially proven, in the sense that instead of getting $c=0$ in the limit, we only get $c e=0$.

We end up in fact with the following Theorem:
Theorem 2: Let Ω be a smooth $\left(C^{2}\right)$, bounded and connected open subset of $\mathbb{R}^{N}\left(N \in \mathbb{N}^{*}\right)$, let $d_{1}, . ., d_{5}>0, k_{1}, . ., k_{3}>0$, and let $a_{i n}, . ., e_{i n}$ be initial data in $C^{2}\left(\bar{\Omega}, \mathbb{R}_{+}\right)$, compatible with the Neumann boundary condition (20). Then, for any $\varepsilon>0$, there exists a unique global strong $\left(C^{2}\left(\mathbb{R}_{+} \times \bar{\Omega} ; \mathbb{R}_{+}\right)\right)$solution $\left(a_{\varepsilon}, . ., e_{\varepsilon}\right)$ to the system (15) - (19) with initial and boundary conditions (20) and (21). Moreover, this solution $\left(a_{\varepsilon}, . ., e_{\varepsilon}\right)$ converges up to extraction of a subsequence in $\cap_{p \in[1,+\infty[} L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega\right)$ strong towards (a, b, c, d, e), where (a, b, c, d, e) is a global weak solution of the following limit system:

$$
\begin{align*}
& \partial_{t}(a+c)-\Delta_{x}\left(d_{1} a+d_{3} c\right)=2 k_{2} d e \tag{31}\\
& \partial_{t} b-d_{2} \Delta_{x} b=-k_{1} a b \tag{32}\\
& c e=0 \tag{33}\\
& \partial_{t} d-d_{4} \Delta_{x} d=k_{1} a b-k_{2} d e \tag{34}\\
& \partial_{t}(e-c)-\Delta_{x}\left(d_{5} e-d_{3} c\right)=-2 k_{2} d e-k_{1} a b \tag{35}
\end{align*}
$$

together with initial and boundary conditions (20) and (21) [except those for c].
Note that if we knew that $c=0$ in the above system, we would be able to conclude that the convergence of the whole sequence holds, since there would be uniqueness of a (weak) solution of the system. This identity seems however difficult to prove without extra assumptions. As can be seen, the QSSA is not completely proven in this case (more precisely, it is proven only in the regions where $e \neq 0$: no information about those regions is available unfortunately).

Note also that in the above Theorems, we made no effort to give optimal conditions on the initial data (part of the conclusions would hold even in if the initial data were only continuous, or even belonged to some well chosen L^{p} space. Also the convergences (of a_{ε} towards a, etc.) are shown to hold a.e., but part of them in fact hold in (well chosen) Sobolev spaces.

Finally we did not try here to study the case when the unstable species has a non zero initial datum. In that case, an initial layer should appear, which needs a specific treatment (cf. [5]).

The rest of this paper is devoted to the Proof of Theorem 1 (section 2) and Theorem 2 (section 3).

2. Proof of the Theorem for the simplified model

We begin here the
Proof of Theorem 1: Let us first briefly recall how (for any $\varepsilon>0$), existence and uniqueness of a strong (smooth, nonnegative) solution to system (22) - (26) can be obtained. First, local (in time) solutions are proven to exist thanks to an iterative method like in [10].

Then, this solution is shown to be global (in time) thanks to a continuation process using a priori estimates. We recall here the necessary estimates. First, thanks to the maximum principle, it is clear that (for all $t \geq 0$ such that the solution exists)

$$
\begin{equation*}
0 \leq e_{\varepsilon}(t, x) \leq\left\|e_{i n}\right\|_{L^{\infty}(\Omega)}, \quad 0 \leq b_{\varepsilon}(t, x) \leq\left\|b_{i n}\right\|_{L^{\infty}(\Omega)} \tag{36}
\end{equation*}
$$

Observing that

$$
\partial_{t}\left(a_{\varepsilon}+c_{\varepsilon}+2 e_{\varepsilon}\right)-\Delta_{x}\left(d_{1} a_{\varepsilon}+d_{3} c_{\varepsilon}+2 d_{5} e_{\varepsilon}\right)=-2 \frac{k_{3}}{\varepsilon} c_{\varepsilon} e_{\varepsilon} \leq 0
$$

and

$$
\partial_{t}\left(b_{\varepsilon}+d_{\varepsilon}\right)-\Delta_{x}\left(d_{2} b_{\varepsilon}+d_{4} d_{\varepsilon}\right)=-k_{2} d_{\varepsilon} e_{\varepsilon} \leq 0,
$$

we see using the duality method (cf. [12], [11]) that (for any $T>0$ such that the solution exists)

$$
\left\|a_{\varepsilon}\right\|_{L^{2}([0, T] \times \Omega)} \leq C_{T}, \quad\left\|c_{\varepsilon}\right\|_{L^{2}([0, T] \times \Omega)} \leq C_{T}, \quad\left\|d_{\varepsilon}\right\|_{L^{2}([0, T] \times \Omega)} \leq C_{T},
$$

where $C_{T}>0$ does not depend on ε (in fact it only depends on the L^{2} bounds of the initial data $a_{i n}, b_{i n}, d_{i n}, e_{i n}$, and of the the diffusion rates $d_{1}, \ldots, d_{5}>0$). It would even be possible to replace L^{2} in the estimates above by $L^{2+\delta}$ for some $\delta>0$ using the arguments of [7], but we shall show in the sequel that an even better estimate holds.

Indeed, a more careful examination of the duality method shows that (cf. [13])

$$
\begin{equation*}
\left\|d_{\varepsilon}\right\|_{L^{p}([0, T] \times \Omega)} \leq C_{T} \tag{37}
\end{equation*}
$$

for all $p \neq \infty$. Also, as a consequence

$$
\begin{equation*}
\left\|d_{\varepsilon} e_{\varepsilon}\right\|_{L^{p}([0, T] \times \Omega)} \leq C_{T} . \tag{38}
\end{equation*}
$$

Then, writing

$$
\partial_{t}\left(a_{\varepsilon}+e_{\varepsilon}\right)-\Delta_{x}\left(d_{1} a_{\varepsilon}+d_{5} e_{\varepsilon}\right)=-k_{1} a_{\varepsilon} b_{\varepsilon} \leq 0,
$$

and using again the duality arguments of [13], we end up with

$$
\begin{equation*}
\left\|a_{\varepsilon}\right\|_{L^{p}([0, T] \times \Omega)} \leq C_{T} \tag{39}
\end{equation*}
$$

for all $p \neq \infty$.
Finally, observing that

$$
\partial_{t}\left(a_{\varepsilon}+c_{\varepsilon}\right)-\Delta_{x}\left(d_{1} a_{\varepsilon}+d_{3} c_{\varepsilon}\right)=2 k_{2} d_{\varepsilon} e_{\varepsilon},
$$

and using estimate (38) together with (one last time) the duality arguments of [13], we see that

$$
\begin{equation*}
\left\|c_{\varepsilon}\right\|_{L^{p}([0, T] \times \Omega)} \leq C_{T} \tag{40}
\end{equation*}
$$

for all $p \neq \infty$. Note that all those estimates are independent on $\varepsilon>0$.
As a consequence of the previous estimates (the second inequality having already been stated in (38)),

$$
\begin{equation*}
\left\|a_{\varepsilon} b_{\varepsilon}\right\|_{L^{p}([0, T] \times \Omega)} \leq C_{T}, \quad\left\|d_{\varepsilon} e_{\varepsilon}\right\|_{L^{p}([0, T] \times \Omega)} \leq C_{T}, \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|c_{\varepsilon} / \varepsilon\right\|_{L^{p}([0, T] \times \Omega)} \leq C_{T} / \varepsilon, \tag{42}
\end{equation*}
$$

so that thanks to the properties of the heat equation, and eq. (22) - (26),

$$
\begin{equation*}
\left\|a_{\varepsilon}, b_{\varepsilon}, c_{\varepsilon}, d_{\varepsilon}, e_{\varepsilon}\right\|_{L^{\infty}([0, T] \times \Omega)} \leq C_{T, \varepsilon} . \tag{43}
\end{equation*}
$$

According to [10], existence (for a given $\varepsilon>0$) of a global (locally bounded) solution to system (22) - (26) holds. Then, the smoothness of this solution is a direct consequence of bootstraps arguments using the heat kernel properties, and uniqueness also holds (cf. also [10]).

We now turn to the proof of the QSSA. Note that estimates (43) cannot be used since the constant appearing there is not ε-independent, whereas estimates (36) - (40) are available since they are ε-independent.

We observe that integrating eq. (26) over $[0, T] \times \Omega$,

$$
\int_{\Omega} e_{\varepsilon}(T, x) d x+\frac{k_{3}}{\varepsilon} \int_{0}^{T} \int_{\Omega} c_{\varepsilon}(t, x) d x d t \leq \int_{\Omega} e_{i n}(x) d x
$$

In other words,

$$
\begin{equation*}
\left\|c_{\varepsilon} / \varepsilon\right\|_{L^{1}([0, T] \times \Omega)} \leq C_{T} \tag{44}
\end{equation*}
$$

which, together with estimate (40), entails the convergence towards 0 of c_{ε} in $\cap_{p \in[1,+\infty}\left[L_{l o c}^{p}\left(\mathbb{R}_{+} \times\right.\right.$ Ω) strong.

Then, thanks to estimates (36), (37) and (39), we see that up to the extraction of a subsequence, $a_{\varepsilon} \rightharpoonup a, d_{\varepsilon} \rightharpoonup d$ in $\cap_{p \in[1,+\infty}\left[L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega\right)\right.$ weak (where a, d are some elements of $\cap_{p \in[1,+\infty[} L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega\right)$), and $b_{\varepsilon} \rightharpoonup b, e_{\varepsilon} \rightharpoonup e$ in $L^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$ weak (where b, e are some elements of $\left.L^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)\right)$.

Using estimate (44) together with (41) and eq. (22) - (26), and remembering the compactness properties of the heat equation, we see that the convergences above also hold for a.e. t, x, and therefore in $\cap_{p \in[1,+\infty}\left[L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega\right)\right.$ strong.

As a consequence, the sequence $a_{\varepsilon} b_{\varepsilon}$ converges (up to extraction of a subsequence) towards $a b$ in $\cap_{p \in[1,+\infty[} L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega\right)$ and the sequence $d_{\varepsilon} e_{\varepsilon}$ converges (up to extraction of a subsequence) towards de in $\cap_{p \in[1,+\infty}\left[L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega\right)\right.$.

We can therefore pass to the limit in the sense of distributions (more precisely, with test functions taken in $\left.C_{c}^{\infty}\left(\mathbb{R}_{+} \times \bar{\Omega}\right)\right)$) in eq. (23) and (25) and get eq. (28) and (29) in the sense of distributions (more precisely, those equations are satisfied in the weak sense including the boundary condition (8) [for b and d] and the initial data (9) [for b and d]; this means once again that the test functions are taken in $\left.C_{c}^{\infty}\left(\mathbb{R}_{+} \times \bar{\Omega}\right)\right)$.

We then write the result of the sum of eq. (22) and eq. (24) on one hand, and the result of the difference between eq. (26) and eq. (24) on the other hand:

$$
\begin{align*}
& \partial_{t}\left(a_{\varepsilon}+c_{\varepsilon}\right)-\Delta_{x}\left(d_{1} a_{\varepsilon}+d_{3} c_{\varepsilon}\right)=2 k_{2} d_{\varepsilon} e_{\varepsilon}, \tag{45}\\
& \partial_{t}\left(e_{\varepsilon}-c_{\varepsilon}\right)-\Delta_{x}\left(d_{5} e_{\varepsilon}-d_{3} c_{\varepsilon}\right)=-2 k_{2} d_{\varepsilon} e_{\varepsilon}-k_{1} a_{\varepsilon} b_{\varepsilon} . \tag{46}
\end{align*}
$$

We can also pass to the limit in this equation in the sense of distributions (once again, more precisely, with test functions taken in $C_{c}^{\infty}\left(\mathbb{R}_{+} \times \bar{\Omega}\right)$), and get eq. (27) and (30) in the sense of distributions (more precisely, those equations are satisfied in the weak sense including the boundary condition (8) [for a and e] and the initial data (9) [for a and e]; this means once again that the test functions are taken in $C_{c}^{\infty}\left(\mathbb{R}_{+} \times \bar{\Omega}\right)$).

In this way, we end up with a weak solution of the limit system (27) - (30) together with initial and boundary conditions (20) and (21) [except those for c]. According to the method described in [10] for example, we know that this solution is the unique strong (smooth, nonnegative) solution of the system, so that the whole family $a_{\varepsilon}, b_{\varepsilon}, c_{\varepsilon}, d_{\varepsilon}, e_{\varepsilon}$ (and not just a subsequence) converges towards $a, b, 0, d, e$.

This concludes the Proof of Theorem 1.

3. Proof of the Theorem for the complete model

We begin here the
Proof of Theorem 2: We observe that estimates (36) - (41) still hold for the (local in time) solution of system (15) - (19), the proof being identical to the one of the previous section.

We now replace estimate (42) by

$$
\begin{equation*}
\left\|c_{\varepsilon} e_{\varepsilon} / \varepsilon\right\|_{L^{p}([0, T] \times \Omega)} \leq C_{T} / \varepsilon, \tag{47}
\end{equation*}
$$

so that thanks to the properties of the heat equation, and eq. (15) - (19), estimates (43) hold. Using then the results of [10], existence (for a given $\varepsilon>0$) of a global in time (locally bounded) solution to system (15) - (19) holds. We recall that the smoothness of this solution is a direct consequence of bootstraps arguments using the heat kernel properties, and that uniqueness also holds (cf. also [10]).

We now investigate the validity of the QSSA for this chain reaction. We integrate eq. (19) over $[0, T] \times \Omega$, and end up with

$$
\int_{\Omega} e_{\varepsilon}(T, x) d x+\frac{k_{3}}{\varepsilon} \int_{0}^{T} \int_{\Omega} c_{\varepsilon}(t, x) e_{\varepsilon}(t, x) d x d t \leq \int_{\Omega} e_{i n}(x) d x
$$

Then,

$$
\begin{equation*}
\left\|c_{\varepsilon} e_{\varepsilon} / \varepsilon\right\|_{L^{1}([0, T] \times \Omega)} \leq C_{T}, \tag{48}
\end{equation*}
$$

which, together with estimates (36) and (40), entails the convergence towards 0 of $c_{\varepsilon} e_{\varepsilon}$ in $\cap_{p \in[1,+\infty}\left[L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega\right)\right.$ strong.

Using as in the previous section estimates (36) - (39), but also (40), we see that up to the extraction of a subsequence, $a_{\varepsilon} \rightharpoonup a, c_{\varepsilon} \rightharpoonup c, d_{\varepsilon} \rightharpoonup d$ in $\cap_{p \in[1,+\infty}\left[L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega\right.\right.$) weak (where a, c, d are some elements of $\cap_{p \in[1,+\infty}\left[L_{\text {loc }}^{p}\left(\mathbb{R}_{+} \times \Omega\right)\right.$), and $b_{\varepsilon} \rightharpoonup b, e_{\varepsilon} \rightharpoonup e$ in $L^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)$ weak (where b, e are some elements of $\left.L^{\infty}\left(\mathbb{R}_{+} \times \Omega\right)\right)$.

Using now estimate (48) together with (41) and eq. (15) - (19), and remembering the compactness properties of the heat equation, we see that the convergences above also hold for a.e. t, x, and therefore in $\cap_{p \in[1,+\infty}\left[L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega\right)\right.$ strong.

As in the previous section, we therefore see that the sequence $a_{\varepsilon} b_{\varepsilon}$ converges (up to extraction of a subsequence) towards $a b$ in $\cap_{p \in[1,+\infty}\left[L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega\right)\right.$ and that the sequence $d_{\varepsilon} e_{\varepsilon}$ converges (up to extraction of a subsequence) towards $d e$ in $\cap_{p \in[1,+\infty} L L_{l o c}^{p}\left(\mathbb{R}_{+} \times \Omega\right.$).

We now pass to the limit in the system (15) - (19). Using estimate (48) and Fatou's lemma, we first see that $c e=0$, so that (33) holds.

We can also pass to the limit in the sense of distributions (more precisely, with test functions taken in $\left.C_{c}^{\infty}\left(\mathbb{R}_{+} \times \bar{\Omega}\right)\right)$) in eq. (16) and (18) and get eq. (32) and (34) in the sense of distributions (more precisely, those equations are satisfied in the weak sense including the boundary condition (8) [for b and d] and the initial data (9) [for b and d]; this means once again that the test functions are taken in $C_{c}^{\infty}\left(\mathbb{R}_{+} \times \bar{\Omega}\right)$).

We then write the result of the sum of eq. (15) and eq. (17) on one hand, and the result of the difference between eq. (19) and eq. (17) on the other hand:

$$
\begin{gather*}
\partial_{t}\left(a_{\varepsilon}+c_{\varepsilon}\right)-\Delta_{x}\left(d_{1} a_{\varepsilon}+d_{3} c_{\varepsilon}\right)=2 k_{2} d_{\varepsilon} e_{\varepsilon} \tag{49}\\
\partial_{t}\left(e_{\varepsilon}-c_{\varepsilon}\right)-\Delta_{x}\left(d_{5} e_{\varepsilon}-d_{3} c_{\varepsilon}\right)=-2 k_{2} d_{\varepsilon} e_{\varepsilon}-k_{1} a_{\varepsilon} b_{\varepsilon} . \tag{50}
\end{gather*}
$$

We can also pass to the limit in these equations in the sense of distributions (once again, more precisely, with test functions taken in $C_{c}^{\infty}\left(\mathbb{R}_{+} \times \bar{\Omega}\right)$), and get eq. (31) and (35) in the sense of distributions (more precisely, those equations are satisfied in the weak sense including the boundary condition (8) [for a and e] and the initial data (9) [for a and e]; this means once again that the test functions are taken in $\left.C_{c}^{\infty}\left(\mathbb{R}_{+} \times \bar{\Omega}\right)\right)$.

In this way, we end up with a weak solution of the limit system (31) - (35) together with initial and boundary conditions (20) and (21) [except those for c].

Note however that we have no information on the smoothness of the solutions to system (31) - (35) since it is not written under the standard parabolic form. We also do not know if uniqueness holds for this system, so that we cannot prove that the whole family $a_{\varepsilon}, b_{\varepsilon}, c_{\varepsilon}, d_{\varepsilon}, e_{\varepsilon}$ converges towards a, b, c, d, e.

This concludes the Proof of Theorem 2.

Acknowledgments

This work was performed in the frame of the activities sponsored by GNFM-INdAM, and by ENS of Cachan and University of Messina.

References

[1] Bisi M, Conforto F and Desvillettes L 2007 Bull. Inst. Acad. Sin. (N.S.) 2 (4) 823
[2] Blouza A, Coquel F and Hamel F 2000 Combust. Theory Modelling 4339
[3] Bothe D 2003 J. Differential Equations 19327
[4] Bothe D and Hilhorst D 2003 J. Math. Anal. Appl. 286125
[5] Bothe D and Pierre M 2010 J. Math. Anal. Appl. 368 (1) 120
[6] Bothe D Pierre M 2012 Discrete Contin. Dyn. Syst. Ser. S 5 (1), 49
[7] Canizo J A, Desvillettes L and Fellner K 2013 Preprint n. 2013-07 of CMLA, ENS Cachan, accepted for publication in Communications in Partial Differential Equations
[8] Come G M 1977 J. Phys. Chem. 812560
[9] Hilhorst D, Van Der Hout R and Peletier L A 2000 Nonlinear Anal. 41803
[10] Desvillettes L 2007 Rivista di Matematica dell'Università di Parma. 7 (7) 81
[11] Martin R H and Pierre M1992 Math. Sci. and Engrg. 185363
[12] Pierre M and Schmitt D 2000 SIAM Rev. 42 (1) 93
[13] Quittner P and Souplet P 2007 Superlinear parabolic problems. Blow-up, global existence and steady states (Berlin: Birkhauser Advanced Texts)
[14] Ren Z and Pope L A 2004 Combustion and Flame 137251
[15] Segel L A and Slemrod M 1989 SIAM Review 31446
[16] Yannacopoulos A et al 1996 Phys. Letters A 22382

