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Abstract. The CPT theorem in quantum field theory, its validity, breaking and consequences
are reviewed. One can show that for CPT theorem to hold, Lorentz invariance is not always
needed. Also one can have CPT violation, while there is Lorentz invariance. Field theoretical
examples for both cases are given and mass differences between particle-antiparticle are discussed
as well. Unambiguous tests of CPT violation, unrelated to the breaking of Lorentz invariance,
are suggested.

1. Introduction
Lorentz symmetry and the CPT invariance are two of the most fundamental symmetries of
Nature, whose violation has not yet been observed. While the Lorentz invariance is a continuous
symmetry of space-time, the CPT involves the discrete space- and time-inversions, P , T , and
the charge conjugation operation on the fields, C. Although the individual symmetries, C,
P and T have been observed to be violated in various interactions, their combined product,
CPT , remarkably remains still as an exact symmetry. The first proof of CPT theorem was
given by Lüders and Pauli [1,2] based on the Hamiltonian formulation of quantum field theory,
which involves locality of the interaction, Lorentz invariance and Hermiticity of the Hamiltonian.
Later on the theorem was proven by Jost [3] (see also [4–6]) within the axiomatic formulation of
quantum field theory without reference to any specific form of interaction. This proof of CPT
theorem relaxes the requirement of locality or local commutativity condition to the so-called weak
local commutativity. Lorentz symmetry has been an essential ingredient of the proof, both in
the Hamiltonian and in the axiomatic proofs.

A simple phenomenological classification of possible C, P, T, CP, PT, TC and CPT -
violating effects is presented in [7]. For consequences of CPT and their experimental tests, as
well as some theoretical considerations on the possibilities of violation of Lorentz invariance and
CPT in the known interactions, we refer to [8–13] and references therein.

It is important to clarify the relation between the CPT and Lorentz invariance and in
particular to see whether the violation of any of them implies the violation of the other. This
issue has recently become a topical one due to the growing phenomenological importance of CPT
violating scenarios, namely in neutrino physics as well as its cosmological and astrophysical
consequences. Indeed, the relation between the CPT and Lorentz invariance has acquired
a prominent place in nowadays particle physics with the attempts of explaining in a unified
manner the contradictory results, ”anomalies”, in the interpretation of various neutrino physics
experiments, without enlarging the neutrino sector. The idea was first suggested by Murayama
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and Yanagida [14] in the form of different masses for neutrino and antineutrino, based on
phenomenological considerations. This proposal was formalized as a CPT -violating quantum
field theory with a mass difference between neutrino and antineutrino in [15,16]. The issue was
taken up in relation with the Lorentz symmetry by Greenberg [17], the conclusion of Greenberg’s
analysis being that CPT violation implies violation of Lorentz invariance. In the following, we
shall show that this claim is in general not valid. Moreover, a Lorentz-invariant model with
mass splitting between particle and antiparticle has also been proposed.

2. Lorentz-invariance violating but CPT -invariant quantum field theories
During the last decade, we have learned that the violation of Lorentz invariance does not
necessarily lead to the violation of the CPT theorem. The example comes from the quantum
field theory on noncommutative space-time (NC QFT) with the canonical, Heisenberg-like,
commutation relations for coordinate operators:

[xµ, xν ] = iθµν , (1)

with θµν an antisymmetric constant matrix.
In this case, by the nature of the above noncommutativity parameter θµν being a constant but

not a tensor, Lorentz invariance is broken, but not the CPT symmetry [18–21]. Translational
invariance is valid. In addition to the Lorentz invariance violation, such NC QFTs are nonlocal in
the noncommuting coordinates. However, the Lorentz symmetry violation is of a very particular
form, and invariance under the stability group of the matrix θµν is preserved under the so-called
residual symmetry SO(2) × SO(1, 1). This reduced symmetry is enough to prove the CPT
theorem only for the scalar fields (for which the C operation is a simple Hermitian conjugation)
on the noncommutative space-time (1) [19]. A full proof of the CPT theorem in Lorentz-violating
noncommutative quantum field theory, however, could be achieved [20] only by using the twisted
Poincaré symmetry [22, 23] which these theories possess. The twisted Poincaré invariance is a
deformation of the Poincaré symmetry, considered as a Hopf algebra, a concept coming from the
theory of quantum groups [24], as compared with the Lie algebra. The irreducible representations
of twisted Poincaré are identical to those of the usual Poincaré algebra, i.e. labeled by the mass
and spin of the particles. Therefore, the meaning of the charge conjugation has survived intact
in the noncommutative quantum field theories. While parity and time reversal symmetries can
be defined with any concept of space and time, the notion of charge conjugation has meaning
only in the framework of Lorentz symmetry. Antiparticles are a consequence of special relativity.
Particle and antiparticle are in the same irreducible representation of the Poincaré group. The
CPT theorem is thus strongly connected to the Poincaré group representations, and not so much
to the Lorentz symmetry, as the validity of the CPT theorem in the noncommutative space-time
shows.

3. CPT -violating but Lorentz-invariant nonlocal model
In [25] was proposed a class of models which preserve Lorentz invariance while breaking the CPT
symmetry through a (nonlocal) interaction. The latter attitude is taken as responsible for the
violations of a symmetry, based on our experience that all the discrete, C, P and T invariances,
as well as other symmetries, are broken in our description of Nature by means of interaction.
We also know that nonlocal field theories appear, in general, as effective field theories of a larger
theory.

Consider a field theory with the nonlocal interaction Hamiltonian of the type

Hint(x) = λ

∫
d4y φ∗(x)φ(x)φ∗(x)θ(x0 − y0)θ((x− y)2)φ(y) + h.c., (2)
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where λ is a coupling constant with dimension appropriate for the Hamiltonian density, φ(x) is a
Lorentz-scalar field and θ is the Heaviside step function, with values 0 or 1, for its negative and
positive argument, respectively. The combination θ(x0−y0)θ((x−y)2) in (2) ensures the Lorentz
invariance, i.e. invariance under the proper orthochronous Lorentz transformations, since the
order of the times x0 and y0 remains unchanged for time-like intervals, while for space-like
distances the interaction vanishes. Also, the same combination makes the nonlocal interaction
causal at the tree level, which dictates that there is no interaction when the fields are separated
by space-like distances and thus there is a maximum speed of c = 1 for the propagation of
information.

On the other hand, it is clear that C and P invariance are trivially satisfied in (2), while T
invariance is broken due to the presence of θ(x0 − y0) in the integrand.

One can always insert into the Hamiltonian (2), without changing its symmetry properties,
a weight function or form-factor F ((x− y)2), for instance of a Gaussian type:

F = exp

(
−(x− y)2

l2

)
, (3)

with l being a nonlocality length in the considered theory. Such a weight function would smear
out the interaction and would guarantee the desired behaviour of the integrand in (2); in the limit
of fundamental length l→ 0 in (3), the Hamiltonian (2) would correspond to a local, CPT - and
Lorentz-invariant theory. The nonlocality length l could be looked upon as being a characteristic
parameter relating the effective field theory to its parent one, for instance the radius of a
compactified dimension when the parent theory is a higher-dimensional one. Furthermore, with
such a weight function, the interaction vanishes at infinite (x−y)2 separations and thus one can
envisage the existence of in- and out-fields.

There exists a whole class of such CPT -violating, Lorentz invariant field theories involving
different, scalar, spinor or higher-spin interacting fields [25]. Typical simplest examples are:

Hint(x) = λ

∫
d4y φ∗1(x)φ1(x)θ(x0 − y0)θ((x− y)2)φ2(y) + h.c., (4)

Hint(x) = λ

∫
d4y ψ̄(x)ψ(x)θ(x0 − y0)θ((x− y)2)φ(y) + h.c., (5)

Hint(x) = λ

∫
d4y φ(x)θ(x0 − y0)θ((x− y)2)φ2(y) + h.c. (6)

The above Hamiltonians are nonlocal in time, and thus we expect difficulties in defining
a unitary S-matrix in general. In addition, Marnelius [26] showed the breakdown of energy-
momentum conservation in this class of theories if one naively applies canonical quantization. We
suspect that this difficulty noted by Marnelius is associated with the absence of the well-defined
canonical momentum and canonical quantization in theories nonlocal in time. To avoid this
and related difficulties with canonical quantization, we use the path integral which is based on
Schwinger’s action principle, as explained in detail below. This path integral is quite general and
has an advantage when applied to the analysis of a theory nonlocal in time: we do not start with
the notion of canonical momentum, which is not generally defined in theories nonlocal in time.
Instead, the canonical structure, should it exist, is fully extracted later from Green’s functions
defined in the path integral formalism by the Bjorken–Johnson–Low (BJL) prescription. The
path integral thus defined is manifestly Lorentz-invariant and, in fact, Poincaré invariant. The
energy-momentum conservation is thus ensured although the canonically quantized energy-
momentum operator does not exist in general. Even the possible presence of Lorentz anomaly,
i.e., quantum breaking of Lorentz symmetry, is reliably detected by the path integral.

XXIst International Conference on Integrable Systems and Quantum Symmetries (ISQS21) IOP Publishing
Journal of Physics: Conference Series 474 (2013) 012031 doi:10.1088/1742-6596/474/1/012031

3



4. Lagrangian model of fermion mass splitting
It has been shown [27] that, by including the CPT -violation only in the interaction term of a
Lorentz-invariant Lagrangian, the equality of masses of particle and antiparticle remains valid.
The question arises whether a Lorentz-invariant model can be constructed in which the masses of
particle and antiparticle split. Obviously, besides CPT violation, such a model has necessarily
to feature C and CP violation, since otherwise the antiparticle can always be defined by an
operation containing C and ensuring the equality of masses.

In the present nonlocal formulation, we have a new possibility which is absent in a smooth
nonlocal extension of the CPT -even local field theory. The term iµψ̄(x)ψ(y) (to be precise,
iµψ̄(x)ψ(x)) with a real µ does not appear in the local Lagrangian since it is canceled by its
Hermitian conjugate. Also this term is CPT -odd. But in the present nonlocal theory one can
consider the Hermitian combination∫

d4xd4y[θ(x0 − y0)− θ(y0 − x0)]δ((x− y)2 − l2)[iµψ̄(x)ψ(y)], (7)

which is non-vanishing. Under CPT , we have iµψ̄(x)ψ(y) → −iµψ̄(−y)ψ(−x). By performing
the change of integration variables −x → y and −y → x, this combination is confirmed to be
CPT = −1. In fact, we have the following transformation property of the operator part

C : iµψ̄(x)ψ(y)→ iµψ̄(y)ψ(x), (8)

P : iµψ̄(x0, ~x)ψ(y0, ~y)→ iµψ̄(x0,−~x)ψ(y0,−~y),

T : iµψ̄(x0, ~x)ψ(y0, ~y)→ −iµψ̄(−x0, ~x)ψ(−y0, ~y),

and thus the overall transformation property is C = −1, P = 1, T = 1. Namely, C = CP =
CPT = −1.

It is thus interesting to examine a new action, proposed in [28],

S =

∫
d4x{ψ̄(x)iγµ∂µψ(x)−mψ̄(x)ψ(x) (9)

−
∫
d4y[θ(x0 − y0)− θ(y0 − x0)]δ((x− y)2 − l2)[iµψ̄(x)ψ(y)]},

which is Lorentz invariant and Hermitian. For the real parameter µ, the third term has
C = CP = CPT = −1 and no symmetry to ensure the equality of particle and antiparticle
masses.

The Dirac equation is replaced by

iγµ∂µψ(x) = mψ(x) (10)

+iµ

∫
d4y[θ(x0 − y0)− θ(y0 − x0)]δ((x− y)2 − l2)ψ(y).

By inserting an ansatz for the possible solution

ψ(x) = e−ipxU(p), (11)

we have

6pU(p) = mU(p)

+ iµ

∫
d4y[θ(x0 − y0)− θ(y0 − x0)]

× δ((x− y)2 − l2)e−ip(y−x)U(p)

= mU(p) + iµ[f+(p)− f−(p)]U(p), (12)
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where f±(p) is a Lorentz invariant form factor defined by

f±(p) =

∫
d4z1e

±ipz1θ(z01)δ((z1)
2 − l2), (13)

which are inequivalent for time-like p due to the factor θ(z01). For time-like momentum p, one
may choose a suitable Lorentz frame such that ~p = 0 and

f±(p0) = 2π

∫ ∞
0

dz
z2e±ip

0
√
z2+l2

√
z2 + l2

, (14)

and for the space-like momentum p one may choose a suitable Lorentz frame such that p0 = 0
and

f±(~p) =
2π

|p|2
∫ ∞
0

dz z
sin z√

z2 + (|p|l)2
, (15)

which is analogous to the Fourier transform of the Coulomb potential and real. The expression
f±(p) is mathematically related to the formula of the two-point Wightman function (for a free
scalar field), which suggests that f±(p) is mathematically well-defined for p 6= 0 at least in the
sense of distribution.

The (off-shell) propagator is defined by∫
d4xeip(x−y)〈T ?ψ(x)ψ̄(y)〉 =

i

6p−m+ iε− iµ[f+(p)− f−(p)]
, (16)

which is manifestly Lorentz covariant. Note that we use the T ?-product for the path integral in
accord with Schwinger’s action principle, which is based on the equation of motion (10) with a
source term added:

〈0,+∞|0,−∞〉J =

∫
Dψ̄Dψ exp i

{
S +

∫
d4xLJ ]

}
, (17)

where the action S is given in (9) and the source term is LJ = ψ̄(x)η(x) + η̄(x)ψ(x). The
T ?-product is quite different from the canonical T -product in the present nonlocal theory, and
in fact the canonical quantization is not defined in the present theory. It is however important
to note that the T ?-product can reproduce all the results of the T -product, if the T -product is
well-defined, by means of the Bjorken–Johnson–Low prescription [29]. In the present example,
the presence of the sine-function in the denominator of the correlation function complicates this
procedure, which is an indication of the absence of the canonical quantization of (9). We also
emphasize that the analysis of the mass-splitting can be performed in terms of the exact solution
of the (modified) free Dirac equation (10), which also defines the propagator in the present path
integral prescription.

The propagator (16) is also an exact propagator for (9) in the sense of the propagator theory
of relativistic quantum mechanics, and thus it could describe the particle and antiparticle
propagation if one understands the antiparticle with negative energy propagating backward
in time. However, if one attempts to describe the particle and antiparticle propagation with
definite masses by pole approximation, for example, then the off-shell Lorentz covariance of the
propagator (16) is lost.

For the space-like p, the extra term with µ in the denominator of the propagator (16) vanishes
since f+(p) = f−(p) for p = (0, ~p), as can be easily seen from (15). Thus the propagator has
poles only at the time-like momentum, and in this sense the present Hermitian action (9) does
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not allow a tachyon. By assuming a time-like p, we go to the frame where ~p = 0. Then the
eigenvalue equation is given by

p0 = γ0{m+ iµ[f+(p0)− f−(p0)]}, (18)

namely,

p0 = γ0

[
m− 4πµ

∫ ∞
0

dz
z2 sin[p0

√
z2 + l2]√

z2 + l2

]
, (19)

where we used the explicit formula in (14). The solution p0 of this equation (19) determines the
possible mass eigenvalues.

This eigenvalue equation under p0 → −p0 becomes:

−p0 = γ0

[
m+ 4πµ

∫ ∞
0

dz
z2 sin[p0

√
z2 + l2]√

z2 + l2

]
. (20)

By sandwiching this equation by γ5, which is regarded as CPT operation, we have

−p0 = γ0

[
−m− 4πµ

∫ ∞
0

dz
z2 sin[p0

√
z2 + l2]√

z2 + l2

]
, (21)

i.e.,

p0 = γ0

[
m+ 4πµ

∫ ∞
0

dz
z2 sin[p0

√
z2 + l2]√

z2 + l2

]
, (22)

which is not identical to the original equation in (19). In other words, if p0 is the solution of
the original equation, −p0 cannot be the solution of the original equation except for µ = 0. The
last term in the Lagrangian (9) with C = CP = CPT = −1 splits the particle and antiparticle
masses.

As a crude estimate of the mass splitting, one may assume µ� m and solve these equations
iteratively. If the particle mass for (19) is chosen at

p0 ' m− 4πµ

∫ ∞
0

dz
z2 sin[m

√
z2 + l2]√

z2 + l2
, (23)

then the antiparticle mass for (22) is estimated at

p0 ' m+ 4πµ

∫ ∞
0

dz
z2 sin[m

√
z2 + l2]√

z2 + l2
. (24)

Thus, the simple Lorentz invariant CPT violating Lagrangian model in (9), which produces
the splitting of particle and antiparticle masses. The simple Lagrangian model will provide a
useful theoretical laboratory when one investigates Lorentz invariant CPT violation effects.

The idea has been extended to the originally posed problem of the possible splitting of
neutrino and antineutrino masses [30], assuming the neutrino masses to be predominantly Dirac-
type in the Standard Model and without spoiling the SU(2)L × U(1) gauge symmetry.

An attempt has been made [31] to incorporate the electromagnetic interaction in a Lorentz
invariant but CPT violating nonlocal model with particle-antiparticle mass-splitting, which
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is regarded as a modified QED. The gauge invariance is maintained by the Schwinger non-
integrable phase factor but the electromagnetic interaction breaks C, CP and CPT symmetries.
To introduce the electromagnetic interaction in (9), we consider the simplest scheme (a modified
QED):

S =

∫
d4x

{
ψ̄(x)iγµDµψ(x)−mψ̄(x)ψ(x)

−
∫
d4y[θ(x0 − y0)− θ(y0 − x0)]δ((x− y)2 − l2)iµψ̄(x) exp

[
ie

∫ x

y
Aµ(z)dzµ

]
ψ(y)

}
−1

4

∫
d4xFµν(x)Fµν(x), (25)

with

Dµ = ∂µ − ieAµ(x). (26)

We added the Schwinger non-integrable phase factor,

exp

[
ie

∫ x

y
Aµ(z)dzµ

]
, (27)

to make the nonlocal term gauge invariant. This action is invariant under the gauge
transformations

ψ(x)→ eiα(x)ψ(x),

Aµ(x)→ Aµ(x) +
1

e
∂µα(x), (28)

and the C, CP and CPT transformation properties of each term in the action (25) are the same
as in the theory without electromagnetic couplings.

It is natural to consider the non-integrable phase factor in (25) as an independent dynamical
entity rather than a given external factor. In fact, Y. Nambu emphasized in many occasions the
non-integrable phase factor as a manifestation of string-like objects appearing in the theory.

The proposal of [31] is to replace the non-integrable phase factor in (25) by a first quantized
very massive particle propagation defined by the covariant path integral

exp

[
ie

∫ x

y
Aµ(z)dzµ

]
δα,β ⇒ (29)∫

Dzµ exp
{
i

∫ x

y

1

2

[
(żµ)2 +M2

]
dτ + ie

∫ x

y
Aµ(z)

dzµ

dτ
dτ
}
δα,β,

where the factor δα,β contracts the spinor indices, an analogue of the Chan-Paton factor in string
theory. In this way, the non-integrable phase factor becomes more dynamical and the flow of the
charge is visualized in Feynman diagrams, although the second quantized particle and the first
quantized particle appear in a mixed manner in Feynman diagrams. This use of a semi-static
massive particle for the non-integrable phase factor is common in lattice gauge theory.

The full set of Ward–Takahashi identities, i.e. the relations among different Green’s functions
for the presented modified QED, can be derived formally in the path integral quantization, but
the exact current becomes more involved due to the presence of the non-integrable phase factor
in the full action [31]. An analysis of higher order effects in the electromagnetic coupling in
the presence of the non-integrable phase factor even in the lowest order of the CPT -violation
parameter µ is an interesting subject of future study.
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5. Conclusion
Besides the fact that both CPT and Lorentz invariance are two most fundamental symmetries
in physics, whose violations have not been hitherto observed, the relation between the
two symmetries and their possible breaking are of considerable theoretical and experimental
interest. Recent MINOS neutrino experiments with their favoured interpretation through a
mass difference for muon neutrino and antineutrino have revived interest in CPT violation and
its possible implication on Lorentz invariance breaking [14,32–34].

It is an interesting question whether the CPT violation the models described above
[25, 27, 28, 30, 31] could be a long distance effective description of some modified structure of
space-time at short distances, for example.

A treatment of chiral gauge theory in the present scheme, which breaks C invariance, is
in general a difficult but important future task to complete the analysis of the induced CPT
violation in the present scheme. However, relaxing the quadratic CPT -violating term in the
Lagrangian used in the present work as in (9), the question remains as of which symmetry is
responsible for the equality of the masses of partice and antiparticle. By taking CPT violation
to be due to only interaction (when C and CP are also violated), one can show that the equality
of masses persists [35]. Thus, we can infer that as long as the quadratic part in the Lagrangian
is not altered, the equality of the masses of particle and antiparticle is due to Lorentz invariance
rather than to CPT [28, 35]. A further clarification of the basic mechanism which can ensure
equal masses to the particle and anti-particle in the absence of C, CP and CPT symmetries is
an interesting remaining issue. At the same time, if there exists a CPT violating interaction
in Nature, for composite particles such as p − p̄, π+ − π−, K0 − K̄0, etc., as well as for bound
states, such as hydrogen-antihydrogen, there are differences in their masses, due to different
bound-state energies, in their total widths (life-times) and magnetic moments. Therefore, the
experimental measurements on the latter characteristics of composite particles or bound systems
would reveal the existence of a CPT -violating theory, although the theory is Lorentz invariant.

As for practical implications of CPT breaking in the modified QED [31], the search for the
mass splitting of particle and antiparticle, just as the search for the neutrino antineutrino mass
splitting in oscillation experiments [36], is interesting [37]. In the atomic transitions of the matter
or antimatter systems, the frequency differences caused by the small mass difference between
the electron and positron such as in (23) and (24) will be important. Other possibilities are to
look for the possible small C and CP breaking in electromagnetic interactions other than those
caused by weak interactions.

One problem for further study is whether the mechanism of inducing mass splitting between
particle and antiparticle can be used to generate the baryon asymmetry of the Universe in
equilibrium (with CPT violation, one of the three Sakharov conditions can be ignored) and
what does such a case imply for the parameters of the model.
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