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Abstract. Topological polymer networks consist of circular polymers that are topologically
linked. Topological networks made of small circular DNA or protein molecules are of great
interest in biology and nanotechnology because they are found in living organisms and can be
constructed in-vitro. The physical factors that determine the topology of a network as well as
the pathways that are followed for its formation remain poorly understood. In our previous work
we proposed a novel biophysical/computational approach to model the formation of planar DNA
minicircle networks in trypanosomatid parasites. This model suggests that minicircle networks
in trypanosomatid parasites emerged from topologically free minicircles upon space confinement
through a percolation pathway. Our model however is somewhat idealized because it assumes
that the centers of the minicircles in the network are positioned following a regular planar
lattice. Here we propose an extension of the model by allowing the centers of the minicircles
to be randomly displaced from the vertices of the lattice. We numerically show that networks
form following a percolation pathway upon increasing minicircle density. Our model suggests
that the critical percolation density increases as Dperc = 0.8357 − 1.4297 exp(0.6439x) with x
is the maximum displacement of the centers of the minicircles. Our results therefore show that
the plane distribution of minicircles does not dramatically affect the percolation of minicircles
and therefore supports they hypothesis that DNA minicircle networks in trypanosomes evolved
through a percolation pathway.

1. Introduction
Topological polymer networks are networks that are held together through topological
interactions of their subunits. Traditionally, topological polymer networks have been studied in
the context of olympic gels where short linear polymers are cyclized in the presence of minicircles
[14, 15, 17]. However topological networks are also found in diverse biological systems such as the
protein network that makes up the capsid of bacteriophage HK97 [11, 20] or the DNA network
found in the mitochondria of trypanosomatid parasites (reviewed in [18]). In vitro assays also
can produce complex topological networks as in the case of type II topoisomerases assays [13]
and of DNA nanotechnology assays (e.g. [14]).

Theoretical studies of topological networks were pioneered by de Gennes [15]. More recently,
and motivated by DNA networks found in the kinetoplast of trypanosomatids [9], parasitic
organisms that cause fatal diseases in human and livestock, we have proposed a new theoretical
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approach to study the formation of topological networks. Our model incorporates several
features that are specific to the networks found in Trypanosomatid parasites. First, networks
are made of small DNA molecules (≤ 2.5kb), second the centers of the minicircles are confined
to a plane (hence the name planar network) [12]; and third, any two minicircles are topologically
linked by a single interlock [16].

In [9] we proposed that space confinement (or density) of DNA minicircles is a key factor in
the formation of minicircle networks in Trypanosomatids. To test this hypothesis we introduced
a model in which randomly oriented, geometric minicircles are placed on the vertices of a square
lattice. We found that increasing density of minicircles triggers the formation of percolating
clusters, that is clusters of topologically linked minicircles that span the length of the lattice.
This model however may be an oversimplification of the network found in trypanosomatid
parasites since for instance, the density at which percolation occurs depends on the specific
lattice employed [7]. We here consider a model in which the placement of the minicircles is
random. We find that under this condition networks still form by percolation and conclude
that a percolation pathway is a rather robust phenomena that is observed upon minicircle
confinement. We suggest that is a likely mechanism for the evolution of minicircle networks in
trypanosomes.

2. Methods
2.1. Lattice generation and minicircle placement
Two dimensional square lattice models were generated as described in [9]. In brief, the center
of each minicircle was placed at a unique lattice point and no two minicircles shared the same
center; the orientation of each minicircle was determined by its normal vector which was sampled
uniformly over the unit sphere. Disordered (irregular) lattices were generated by displacing
each lattice point uniformly over a disc centered at the lattice vertex with radius given by a
predetermined maximum displacement (Mdisp), measured in terms of the distance between two
adjacent lattice points. Similarly to the model of [9], the density of minicircles in this model is
defined by the number of minicircles per unit area where the radius of the minicircles is used as
the unit length. Consequently, if the distance between two adjacent lattice points in the square
lattice is r, then the density of minicircles of the model is given by 1/r2.

2.2. Topological linking between minicircles
Let C1 and C2 be two disjoint minicircles in R3 (namely two circles that do not intersect each
other). We say that C1 and C2 form an unsplittable link/non-trivial topological link (of two
components) if no topological 2-sphere separates them. The same definition can be extended to
the general case where there are n disjoint simple closed curves in R3. To determine whether
two minicircles were linked we used a geometrical criterion that we introduced in [9]. Given
two minicircles C1 and C2 of fixed radius r centered at P and Q respectively, the planes that
contain the minicircles, together with the plane that bisects P and Q (so that it goes through
the midpoint O of P and Q and is perpendicular to the line segment PQ) intersect at a single
point x with probability one. As illustrated by figure 1, C1 and C2 form an unsplittable link if
and only if R > |Px| = |Qx|.

2.3. An approach to the estimation of the percolation density in disordered topological networks
In order to determine the growth properties of minicircle networks we represent each minicircle
as a lattice point and the linking between two minicircles as a lattice bond between two points.
In our previous studies we determined percolation based on the existence of clusters that spanned
the length the lattice. Disordered lattices do not have well defined lattice edges therefore these
methods are not suitable. To calculate the critical percolation probabilities on two-dimensional
random point distributions we extended the methods developed by Becker and Ziff [2]. In
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Figure 1. The relative positions of two minicircles and the bisecting plane of their centers.
In the shown case the radius of the minicircles is less than |Px| = |Qx| and they are clearly
unlinked.

their work, randomized lattices with periodic boundary conditions were first generated using
partitions of the plane. Clusters were grown from randomly selected points (called seed points)
by connecting nearby points to the cluster according to a preselected probability p. This process
was iterated until no more bonds could be formed or a pre-determined cluster size limit was
reached. Percolation was determined by the distribution of cluster sizes as discussed next.

If Ps denotes the probability that a cluster grows to be at least size s and pc the critical
percolation probability then we may assume that Ps grows as As2−τf [B(p − pc)s

σ] where
τ = 187/91 is the Fisher exponent for the two-dimensional percolation cluster universality
class, σ = 63/91 and f is a the universal scaling function which measures the probability of
occurrence of large clusters. By computing the Taylor expansion of f near the pc we obtain
Ps ∼ s2−τ [A + D(p − pc)sσ + ...] and if we define Cs = Pss

τ−2 then Cs ∼ [A + D(p − pc)sσ]
which means that for large values of s, Cs grows linearly with sσ and its slope vanishes when p is
equal to the critical percolation probability. In our calculations we use Dc, the critical minicircle
density, instead pc to estimate the critical percolation density.

3. Results

3.1. Estimation of Fisher exponent τmini in minicircle networks
The Becker-Ziff method was developed to estimate the critical percolation probability for site
and bond percolation on random lattices. To test that our model is consistent with these models
and therefore the methods proposed by Becker-Ziff can be used in our minicircle model we first
aimed at determining whether minicircle clusters grow in accordance with the critical exponents
assumed in the Becker-Ziff method. For this reason we estimated the value of the Fisher exponent
τ by studying the size distribution of minicircle clusters grown on the regular square lattice.We
denote the estimated value τmini.

In independent bond and site percolation problems, ns, the number of clusters of size s per
lattice site, follows the general scaling relation ns(p) = s−τf [(p − pc)sσ], where the behavior
of the scaling function f can be approximated numerically [19]. As p → pc, f approaches a
constant value. Thus, for p ∼ pc, ns(p) ∼ k · s−τ for some positive constant k. Using this
relation, τmini can then be approximated by the slope of the linear fit of a log-log plot of the
observed cluster size distribution Ns (Ns = ns ×K2 where the lattice is of dimension K ×K)
using the critical percolation density Dc = 0.637 [9]. Figure 2 shows our numerical results for
minicircle clusters generated on 1000 × 1000 regular square lattices with a sample of 1.2 × 107

minicircle clusters. The graph shows the linear regression fit to the log of the cluster size s and
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Figure 2. Log-log plot of Ns vs. s. The linear regression fit to log(Ns) vs. log(s) yields a τmini
value which approximates the accepted traditional site and bond percolation τ = 187/91 ≈ 2.055
within one standard deviation.

the number of clusters of that size Ns. Our estimated value for τmini is 2.02± 0.06, which is in
agreement with the value of τ for the 2-dimensional percolation cluster universality class. From
this result we conclude that the methods developed in [2] are amenable for our study.

3.2. Estimation of the critical percolation density in the square lattice
To validate our approach, we first estimated the square lattice critical percolation density and
compared it with the value of Dc ∼ 0.637 obtained in [9]. As described in Subsection 2.3 we
expect that for large clusters the slope of Cs is a constant and that at D = Dc the slope of
Cs = 0. We then first estimated Cs as a function of sσ.

Figure 3 shows our numerical results. Notice that each curve in the figure shows the value
of Cs for a different density values near 0.637. As expected the slope of each curve is constant
for large clusters and by mere inspection one can appreciate that the value closest to the known
percolation density seems to have zero slope.

To confirm this observation we proceeded as in [2]. We computed the slope of the best linear
fit to each curve Cs for sσ ≥ 10. Since the value at which percolation occurs (i.e. slope of
Cs = 0) may be in between any two of the tested density values, the best linear fit relating the
growth of the slope of Cs with respect to the density and the x-intercept of the best fit was
computed. Figure 4 (bottom) displays the best linear fit and the x-intercept highlighted. Our
estimated value for Dperc = 0.6370 which is in exact agreement with the critical percolation
density obtained in [9].

In order to test the dependence of our results on the sσ value used on our linear fit we repeated
the study with the linear fits for Cs for large sσ for the cases sσ ≥ 9.5, sσ ≥ 10, sσ ≥ 10.5 and
sσ ≥ 11. Our results are shown in Table 1. The data in the table shows that when we restrict
the fitting range to larger sσ values, the changes in the slopes of Cs vs. sσ regression lines are
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Figure 3. Cs curves for minicircle clusters grown for D = 0.6363, 0.6366, 0.6370, 0.6373, 0.6376
from bottom to top. The sample size is 107 for each density value.

small.

Table 1. Cs linear slope dependence on sσ range.

minicircle density min. sσ slope of lin. fit ·10−4

9.5 −6.4851
0.6363 10.0 −6.5843

10.5 −6.6722
11.0 −6.7593
9.5 −3.4024

0.6366 10.0 −3.5171
10.5 −3.6150
11.0 −3.7172
9.5 −0.5547

0.6370 10.0 −0.6666
10.5 −0.7397
11.0 −0.7824
9.5 2.4597

0.6373 10.0 2.3775
10.5 2.3046
11.0 2.2004
9.5 5.3423

0.6376 10.0 5.2980
10.5 5.2518
11.0 5.1642
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Figure 4. Top: Linear relationship between Cs and sσ for large s in the regular square
lattice. Curves were generated using 107 independent clusters grown at minicircle densities
of D = 0.6363, 0.6366, 0.6370, 0.6373, 0.6376. Best fit lines for sσ ≥ 10 are shown to highlight
the near linear behavior of Cs for large values of sσ. Bottom: The linear regression line of
the corresponding slopes of Cs best-fit lines from the top figure (y = 0.89598x − 0.57077,
R2 = 0.9992). The best fit line intersects the horizontal line at a minicircle density of 0.63703.

Figure 5. Minicircle clusters in disordered lattices with maximum displacement of 0.5 (left)
and 1.0 (right) and density of 0.64.
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3.3. Estimation of the percolation density in disordered lattices
Our previous results validate our approach. Next we aimed to employ these methods to
determine the critical percolation densities in disordered lattices. We generated disordered
lattices as described in the methods section with maximum displacement magnitudes of 0.5, 1.0,
1.5, 2.0, 2.5 and 3.0. Figure 5 shows examples of two disordered lattices with different maximum
displacements and same minicircle density. The figure highlights the different clusters.

As in the previous section the growth of Cs was calculated and linearly approximated for
sσ ≥ 10 (similar results would be obtained if a different range of sσ were used, so long as it is
large enough, as indicated by table 1). Our results are shown in figures 6 to 11 for the cases
of maximum displacements 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0. Results for each displacement are
consistent with those obtained in the previous section and also with those obtained for other
displacements. A visual inspection of these results already reveals that Cs tends to be noisier for
larger displacements and that the percolation density grows with the displacement. The growth
of the percolation density is clearly appreciated in the overall range of the slopes of the linear
approximations of Cs.
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Figure 6. Top: Cs curves for lattices of maximum displacement 0.5 evaluated at minicircle
densities 0.7274, 0.7278, 0.7281, 0.7285 and 0.7288 (from bottom to top). 5× 106 clusters were
sampled for each curve. Bottom: The linear regression line of the corresponding slopes of Cs
best-fit lines (y = 0.71742x − 0.52240, R2 = 0.9995). The best fit line intersects the horizontal
line at a minicircle density of 0.72816.
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Figure 7. Top: Cs curves for lattices of maximum displacement 1.0 evaluated at minicircle
densities 0.7953, 0.7957, 0.7960, 0.7964 and 0.7967 (from bottom to top). 5× 106 clusters were
sampled for each curve. Bottom: The linear regression line of the corresponding slopes of Cs
best-fit lines (y = 0.58672x − 0.46697, R2 = 0.9948). The best fit line intersects the horizontal
line at a minicircle density of 0.79590.

Notice that while the minicircle densities sampled for the square lattice without displacement
range from 0.6363 to 0.6376, those corresponding for a maximum displacement of 0.5 range from
0.7274 to 0.7288 and those corresponding to a maximum displacement of 3.0 range from 0.8299
to 0.8314. The critical percolation density for each disordered lattice is estimated using a linear
approximation of the growth of the slopes as a function of minicircle density as shown on the
bottom panels of figures 6 to 11. The estimated critical percolation densities are 0.7282 for
Mdisp = 0.5, 0.7959 for Mdisp = 1.0, 0.8154 for Mdisp = 1.5, 0.8239 for Mdisp = 2.0, 0.8282
for Mdisp = 2.5 and 0.8309 for Mdisp = 3.0. Next we characterized the growth of the critical
percolation density as a function of the maximum displacement. Results are shown in figure
12 where the critical percolation densities are plotted against the maximum displacements.
These results seem to suggest that the critical percolation density will level off as the maximum
displacement increases. The fitted curve in figure 12 has the form y = a − b exp(−cx) where
a, b and c are real-valued constants. As x grows large, y approaches a = 0.83579, which is
our estimate of the limiting value for the critical percolation density as a function of maximum
displacement.
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Figure 8. Top: Cs curves for lattices of maximum displacement 1.5 evaluated at minicircle
densities 0.8145, 0.8149, 0.8152, 0.8156 and 0.8160 (from bottom to top) using 5× 106 clusters
for each curve. Bottom: The linear regression line of the corresponding slopes of Cs best-fit lines
(y = 0.50491x− 0.41170, R2 = 0.9990) intersects the x-axis at a minicircle density of 0.81537.

4. Conclusions
Topological networks made of small minicircles are important in the engineering of olympic
gels and of nanomaterials [14, 15, 17] and in the formation of biologically relevant structures
[11, 13, 18, 20]. In [9] we introduced a new theoretical model to study the formation of DNA
minicircle networks in trypanosomatid parasites. Our model allowed us to characterize the effect
of confinement [9], of the relative minicircle position[7], of the relative orientation of minicircles
[1] and of DNA volume exclusion [8] in the formation of networks. All these models confirm the
existence of a percolation pathway which suggest that the same pathway may be present in the
formation of large topological networks in biological systems. The density at which percolation
occurs depends on the parameters of each model. Interestingly our results show that the relative
orientation of the minicircles has the most dramatic effect on percolation. These studies assume
that minicircles are regularly positioned across a planar lattice. This assumption limits the
applications of the model to structures that are crystalline like and even in those cases they
still represent a somewhat idealized situation. In this study we have investigated the growth
of networks on randomized lattices extending the methods developed by Becker and Ziff [2].
Our results show that disordered topological networks also show a percolation pathway when
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Figure 9. Top: Cs curves for lattices of maximum displacement 2.0 evaluated at minicircle
densities 0.8230, 0.8234, 0.8237, 0.8241 and 0.8245 (from bottom to top), using 5× 106 clusters
for each curve. Bottom: The linear regression line of the corresponding slopes of Cs best-fit lines
(y = 0.41766x− 0.34412, R2 = 0.9839) intersects the x-axis at a minicircle density of 0.82393.

the density of minicircles is increased and that the critical percolation density increases as
Dperc = 0.8357 − 1.4297 exp(−0.6439x) with the maximum displacement of minicircles. These
results therefore support our hypothesis that networks in trypanosomatid parasites grew through
a percolation pathway and serve as a first step in the modeling of networks grown in more diluted
conditions as those grown in-vitro in the presence of type II topoisomerases [13].
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Figure 12. Percolation densities for maximum randomization magnitudes between 0.0 and
3.0. The critical percolation density increases monotonically as the maximum displacement
magnitude is increased. The equation of the fitted curve is y = 0.83579 − 1.42980e−0.64392x

(R2 = 0.9944).
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