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Abstract. The two-loop renormalization group equations for the parameters of softly broken
supersymmetric gauge theories given in the literature are generalized to the case when the gauge
group contains more than a single abelian factor. This contribution to the proceedings of the
DISCRETE 2012 symposium is based on reference [1].

1. Introduction
The two-loop renormalization group equations (RGEs) of a generic softly broken supersymmetric
(SUSY) model have been known for some time [2, 3]. However, these expressions are not
completely general, as they do not handle all possible situations. For instance, if the gauge group
contains one U(1) factor, it is possible to form a Fayet-Illiopoulos term κD in the superpotential
(the RGEs for the additional parameter κ were given in [4, 5, 6]). Another potential issue
is the presence of Dirac gaugino mass terms miA

D ψiλA, if there are superfields in the adjoint

1 Contribution to the proceedings of “DISCRETE 2012 - Third Symposium on Prospects in the Physics of Discrete
Symmetries”, Lisbon, Portugal, 3 - 7 December 2012.
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representation of one of the gauge factor groups (see [7, 8, 9]). Yet another problem occurs
when there are multiple U(1) factor groups, since this usually leads to kinetic mixing between
the gauge bosons of the different U(1)’s [10, 11]. A two-loop renormalization group analysis of
non-SUSY theories with this feature is available in [12], while the supersymmetric case, which
we shall be discussing, was addressed in [1].

The are many practical applications of these results. For instance, the U(1)-mixing effects
in SUSY grand unified theories (GUTs) featuring an extended intermediate U(1)R × U(1)B−L
stage (see for example [13]) can shift the effective MSSM Bino soft mass by several per cent
with respect to the naive estimate where such effects are neglected. In principle, this can have
non-negligible effects for the low-energy phenomenology.

2. Gauge theories with multiple U(1) factor groups
Consider a model with a U(1)n gauge group, containing m supermultiplets Φi, i = 1, · · · ,m.2
As usual, n gauge bosons Aaµ must be introduced, which can be seen as components of a vector
Aµ. Under a gauge transformation with parameters αa we have the following:

Φi → exp (iQai α
a) Φi ≡ exp

(
iQT

i α
)

Φi , (1)

Aµ → Aµ +G−1∂µα , (2)

where Qi and α are also vectors in U(1) space, with components Qai and αa. In the last
equation, a G matrix shows up. In the spirit of making the most general gauge transformation,
G can be any real n × n matrix. This means in particular that the transformation of Aaµ may
depend on some gauge transformation parameter αb with b 6= a. It is straightforward to see
that the Lagrangian will be invariant under this transformation if the covariant derivative of the
supermultiplet Φi takes the form

DµΦi =
(
∂µ − iQT

i GAµ
)

Φi , (3)

which supports the idea that G is a U(1) gauge couplings matrix. Notice that even though it is
a square matrix in U(1) space, its left and right indices contract with different vectors: on the
left we have the vector with the hypercharges of Φi, while on the right there is the U(1) gauge
bosons’ vector. To complete the picture, there is also to consider a generic gauge kinetic term3

−1

4
F T
µνξF

µν (4)

and also, in a softly broken supersymmetric theory, the U(1) gaugino mass term

−1

2
λTMλ+ h.c. . (5)

Here we have introduced additional vectors in U(1) space, Fµν and λ, with components
F aµν ≡ ∂µAaν −∂νAaµ and λa (the gaugino field associated with U(1)a). The new n×n symmetric
matrices ξ andM are parameters of the theory. The advantage of having ξ 6= 1 is that the gauge
coupling matrix can be made diagonal with a rotation of the gauge boson and gaugino fields.
On the other hand, as far as the renormalization group analysis is concerned, it then becomes
necessary to include the effect of ξ on the evolution of the other parameters, as well as to describe
the evolution of ξ itself [12]. As such, we follow an alternative approach: ξ 6= 1 means that the
gauge boson fields (as well as the gaugino fields) are not canonically normalized, so they may

2 If m is smaller than n, the U(1)’s can be rotated such that the fields are only changed under m of them.
3 The same mixing parameter ξ appears in the gaugino kinetic term, and in the 1/2DaDa term as well.
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be rotated and rescaled such that in the new basis ξ = 1. In this way, the U(1)-mixing in the
kinetic term is transferred to the matrix of gauge couplings G and the gaugino mass matrixM .

We note that even with ξ = 1, there is still some freedom to rotate the vectors and matrices
Qi, Aµ, λ, G and M living in U(1) space. Indeed, in general we may perform two unphysical
rotations, O1 and O2, such that

Qi → O1Qi , Aµ → O2Aµ , λ→ O2λ , G→ O1GOT2 , M → O2MOT2 . (6)

3. Inclusion of U(1)-mixing effects in the running of the parameters
The RGEs must reflect the symmetries in equation (6), and this can be used to derive the
structure of the RGEs, with U(1)-mixing effects fully included. For instance, only those
combinations of G and γ ∝

∑
iQiQi

T which transform as (· · · ) → O1 (· · · )OT2 are allowed
to enter the right-hand side of the renormalization group equation of G. However, at one-loop
level, there is only one such structure that can come up from a matter-field loop in the gauge
propagator, namely GGTγG, so one immediately concludes that

β
(one-loop)
G ∝ GGTγG . (7)

The proportionality coefficient is trivially obtained by matching this to the single U(1) case.
It might be tempting to think that without a gaugino mass matrixM in non-SUSY theories,

G can be diagonalized thereby eliminating the U(1)-mixing effects. This however is not the
case, as radiative effects will reintroduce off-diagonalities in the gauge couplings matrix. In
fact, already at the one-loop level, the anomalous dimension γ which controls the RGE of G
is in general a non-diagonal matrix in U(1) space and, as such, G cannot be kept diagonal at
all energy scales. One exception, where U(1)-mixing effects can be eliminated, is when all the
relevant U(1) gauge couplings originate from a common gauge factor and thus, barring threshold
effects, all of them happen to be equal at a certain scale. In such a case G ∝ 1 at some scale,
and both charges and gauge fields can be simultaneously rotated at the one-loop level so that
no off-diagonalities appear in γ [14, 2]. This rotated basis method will only work in non-SUSY
cases where only the gauge sector has to be taken into account. Also, because of the appearance
of Yukawa and trilinear soft SUSY breaking couplings in the two-loop RGEs of G, this approach
ceases to be valid beyond the one-loop level.

4. The generalized two-loop β-functions
In [2] one can find the RGEs for models with a simple gauge group, and also a list of replacement
rules which extends these results to models with a semi-simple gauge group (with one U(1)
at most). Therefore, in order to obtain the RGEs of softly broken SUSY gauge theories with
multiple U(1)’s, we simply need to generalize these replacement rules by including U(1)-mixing
effects. The technique of using the symmetries in equation (6) can be exploited to this end in
many situations. However, in a few cases even a detailed inspection of the underlying expressions
does not allow an unambiguous identification of their generalized form. When this happens, a
careful analysis of the structure of the contributing Feynman diagrams is necessary.

The gauge group is taken to be GA × GB × · · · × U(1)n, where the GX ’s are simple groups.
We use uppercase indices for simple group-factors and lowercase indices for U(1) groups. As
mentioned above, the U(1) sector should be treated as a whole and described in terms of a real
n×n gauge-coupling matrix G, a n×n symmetric soft-SUSY breaking gaugino mass matrixM
and column vectors of charges Qi for each chiral supermultiplet Φi. To eliminate the O1 rotation
freedom in equation (6), we define Vi ≡ GTQi for each i. Since this is the only combinations
of the Qi and G appearing in the Lagrangian, all the RGEs can be written in terms of V ’s and
M only. In this regard, the RGEs of G are noteworthy because they require an isolated G (this
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would not happen if dVi/dt was computed instead of dG/dt). For additional clarifications on the
notation used in the following expressions, see [1].

Depending on the group sector (abelian or simple), we get different RGEs for the gauge
couplings and the gaugino masses. The parameters are then either the matrices G, M or the
numbers gA, MA. For the abelian sector, it is necessary to perform the following replacements
to the simple gauge group expressions in [2]:

C (G)→ 0 , (8)

g3S (R)→ G
∑
p

VpV
T
p , (9)

g5S (R)C (R)→
∑
p

GVpV
T
p

[∑
B

g2BCB (p) + VpV
T
p

]
, (10)

g3C (k)

d (G)
→ GVkV

T
k , (11)

2g2S (R)M →M
∑
p

VpV
T
p +

∑
p

VpV
T
pM , (12)

g2C (k)→ VkV
T
k , (13)

2g2C (k)M →MVkV
T
k + VkV

T
kM , (14)

16g4S (R)C (R)M →
∑
p

{
4
(
MVpV

T
p + VpV

T
pM

) [∑
B

g2BCB (p) + VpV
T
p

]

+8VpV
T
p

[∑
B

MBg
2
BCB (p) + V T

pMVp

]}
. (15)

For a simple factor group GA, the substitution rules of [2] do not need to be changed except
for two cases:

g5S (R)C (R)→ g3ASA (R)

[∑
B

g2BCB (R) + V T
RVR

]
, (16)

16g4S (R)C (R)M → 8g2AMASA (R)

[∑
B

g2BCB (R) + V T
RVR

]

+ 8g2ASA (R)

[∑
B

MBg
2
BCB (R) + V T

RMVR

]
. (17)

As for the rest of the parameters in a SUSY model, the relevant substitution rules read:

g2C (r)→
∑
A

g2ACA (r) + V T
rVr , (18)

Mg2C (r)→
∑
A

MAg
2
ACA (r) + V T

rMVr , (19)

M∗g2C (r)→
∑
A

M∗Ag
2
ACA (r) + V T

rM
†Vr , (20)

MM∗g2C (r)→
∑
A

MAM
∗
Ag

2
ACA (r) + V T

rMM †Vr , (21)

g4C (r)S (R)→
∑
A

g4ACA (r)SA (R) +
∑
p

(
V T
rVp

)2
, (22)
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Mg4C (r)S (R)→
∑
A

MAg
4
ACA (r)SA (R) +

∑
p

(
V T
rMVp

) (
V T
rVp

)
, (23)

g4C2 (r)→

[∑
A

g2ACA (r) + V T
rVr

]2
, (24)

Mg4C2 (r)→

[∑
A

MAg
2
ACA (r) + V T

rMVr

][∑
A

g2ACA (r) + V T
rVr

]
, (25)

g4C (G)C (r)→
∑
A

g4AC (GA)CA (r) , (26)

Mg4C (G)C (r)→
∑
A

MAg
4
AC (GA)CA (r) , (27)

MM∗g4C (G)C (r)→
∑
A

MAM
∗
Ag

4
AC (GA)CA (r) , (28)

g2tAji Tr
(
tAm2

)
→ δji

∑
p

V T
i Vp

(
m2
)p
p
, (29)

g2tAji
(
tAm2

)l
r
→ δjiV

T
l Vi

(
m2
)l
r
, (30)

g4tAji Tr
[
tAC (r)m2

]
→ δji

∑
p

V T
i Vp

[∑
B

g2BCB (p) + V T
pVp

] (
m2
)p
p
, (31)

g4C (i)Tr
[
S (r)m2

]
→
∑
A

g4ACA (i)Tr
[
SA (r)m2

]
+
∑
p

(
V T
i Vp

)2 (
m2
)p
p
, (32)

24g4MM∗C (i)S (R)→ 24
∑
A

g4AMAM
∗
ACA (i)SA (R)

+ 8
∑
p

[(
V T
iMVp

) (
V T
iM

†Vp

)
+
(
V T
iMM †Vp

) (
V T
i Vp

)
+
(
V T
iM

†MVp

) (
V T
i Vp

)]
, (33)

48g4MM∗C (r)2 →
∑
A,B

g2Ag
2
BCA (r)CB (r) (32MAM

∗
A + 16MAM

∗
B)

+
∑
A

g2ACA (r)
(

32MAM
∗
AV

T
rVr + 16MAV

T
rM

†Vr

+ 32V T
rMM †Vr + 16M∗AV

T
rMVr

)
+ 32

(
V T
rMM †Vr

) (
V T
rVr

)
+ 16

(
V T
rMVr

) (
V T
rM

†Vr

)
. (34)

5. Numerical results
In this section, we shall see the importance of the kinetic mixing effects with two examples.
Consider first the SUSY SO(10) model of [13] in which the unified gauge symmetry is broken
down to the MSSM in three steps, namely, SO(10)→ SU(3)c×SU(2)L×SU(2)R×U(1)B−L →
SU(3)c × SU(2)L × U(1)R × U(1)B−L → MSSM; the corresponding breaking scales shall be
denoted by mG, mR and mB−L, respectively. For our purposes, it is crucial that in this model
the ratio mR/mB−L can be as large as 1010 and, hence, the U(1)-mixing effects become important.
Figure (1) shows the importance of U(1)-mixing effects in the one-loop running of the gauge
coupling constants: with otherwise identical conditions, it shifts the low energy value of α−1Y
by as much as 4%. In order to compensate for this, the intermediate scale mR would have to
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Figure 1. One-loop gauge-coupling evolution in the MRV model [13] with and without U(1)-
mixing effects. The position of the GUT scale, the unified gauge coupling and the intermediate
symmetry-breaking scale mR were chosen in such a way as to fit the electroweak data. Close to
the α−1 = 0 axis on the left plot, there is a brown line in the [mB−L,mR] energy range depicting
the evolution of the off-diagonal entries of the matrix A−1 ≡ 4π

(
GGT

)−1 which, at the one-
loop level, scales linearly with logE. Without the kinetic mixing effects taken into account, the
low-energy value of α−1Y (orange solid line on the right) differs from the one obtained in the full
calculation by as much as 4%. If one attempts to obtain the right value of α−1Y (mZ) by adjusting
the SU(2)R breaking scale, the new m′R scale must be shifted with respect to the correct mR by
as much as 4 orders of magnitude (vertical solid and dashed lines on the right).

be lowered by as much as 4 orders of magnitude. We also note that the rotated-basis method
mentioned previously is only partially successful in this model, because the gR and gB−L gauge
couplings do not coincide at the mR scale. In fact, the value of α−1Y (mZ) obtained in this way is
about 2% off from the correct one, which nevertheless is still better than assuming no mixing at
all.

As for gaugino masses, it can be easily shown that the combination GM−1GT is a one-loop
invariant of the RG flow, which generalizes the traditional one, α/M = constant. This relation
can be used to compute the Bino’s mass at low energies,

MY (mSUSY ) =
αY (mSUSY )

αG
pTYM1/2pY , (35)

where M1/2 is the GUT-scale gaugino soft mass matrix and pTY =
(√

3/5,
√

2/5
)
is the vector

describing the combination of U(1)R × U(1)B−L charges which constitutes the MSSM hyper-
charge. From equation (35) we see that the ratio αY (mSUSY )/MY (mSUSY ) depends on whether or
not we include the mixing effects, as was already noticed in reference [15]. Note that if M1/2 is
not proportional to the unit matrix at the GUT scale, the pTYM1/2pY term will mix all entries
ofM1/2. Moreover, in the special case that the abelian gauge couplings unify, even the one-loop
gaugino sector evolution can be fully accounted for by the rotated-basis trick.

Even in cases where the U(1) gauge coupling unify at a certain scale, our two-loop formulas
can produce relevant effects. We illustrate this by taking as an example the model presented
in reference [16] where an intermediate SU(3)c × SU(2)L × U(1)Y × U(1)B−L gauge symmetry
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is assumed to originate from a grand-unified framework. We consider two cases: (i) full gauge
coupling unification at 2 × 1016 GeV and (ii) a small difference of 5% between the two U(1)
couplings caused by possible GUT-scale threshold effects. In the gaugino sector we assume
universal boundary conditions in both cases, but the effect gets even stronger if one considers in
addition threshold effects in the gaugino sector as well.

The results are contained in table (1). Interestingly, besides the expected equivalence of the
rotated-basis method and the full-fledged calculation at the one-loop level, the relevant effective
hypercharge gauge coupling turns out to be identical to the one obtained even at two-loop level if
exact gauge coupling unification is assumed. The reason is that all additional states not present
in the MSSM are charged only with respect to U(1)B−L but are neutral under the MSSM gauge
group. In the gaugino sector the first deviations show up already in this case, which however are
only at the per-mile level. If one also includes threshold corrections at the GUT-scale, then the
effects are at the percent level, leading to shifts in the masses potentially measurable already at
the LHC. Lastly, it should be kept in mind that the effects would be even larger if the U(1)Y
would result from the breaking of U(1)R × U(1)B−L as discussed in the previous example.

Table 1. Low energy values of the entries of the gauge coupling and gaugino mass matrices (gab
and Mab with a, b = Y,BL) and the properly fitted MSSM parameters (gY , MY ). All gaugino
masses are in GeV. We have set the GUT scale at 2× 1016 GeV with gG = 0.72, and imposed an
mSUGRA boundary condition taking M1/2 = 1× 500 GeV. At the one-loop level, we compare
the case with no kinetic mixing effects included, the rotated basis, and the full-fledged calculation.
At the two-loop level, we include the case where gY and gBL are split at the GUT scale due to
threshold corrections.

One-loop results Two-loop results

No kinetic
mixing

Rotated basis
method

Complete
RGEs

No kinetic
mixing

Complete
RGEs

No kinetic
mixing

Complete
RGEs

gY Y 0.4511 0.4700 0.4700 0.4487 0.4677 0.4487 0.4686
gBLBL 0.4083 0.4243 0.4243 0.4070 0.4231 0.4131 0.4298

gBLY , gY BL 0.0 −0.0723 −0.0723 0.0 −0.0725 0.0 −0.0725
gY 0.4511 0.4511 0.4511 0.4487 0.4487 0.4487 0.4500
MY Y 196.34 218.13 218.13 185.82 207.96 185.80 208.71
MBLBL 160.83 178.67 178.67 154.88 173.19 144.26 161.97

MBLY ,MY BL 0.0 −62.39 −62.39 0.0 −63.10 0.0 −62.15
MY 196.34 196.34 196.34 185.82 185.96 185.80 187.04

Exact unification gGUT
BL = 1.05 gGUT

Y

6. Conclusions
Whave derived the renormalization group equations of softly broken supersymmetric models with
more than a single abelian gauge factor group. In such models there are U(1)-mixing effects which
must be taken into consideration. Although formally the evolution equations available in the
literature do not exhibit any obvious pathologies if such subtleties are not taken into account,
the calculations based on these formulas are in general incomplete and, thus, the results are
internally inconsistent. In spite of this, the issue of U(1)-mixing in softly broken supersymmetric
gauge theories had never been addressed in full generality, even at one loop.

The effect of the derived equations has been illustrated for two cases: at the one-loop level, for
a model with different gauge coupling strengths due to a breaking of the original simple group at
a high scale; and at the two-loop level, in a model where gauge coupling unification occurs but

DISCRETE 2012 – Third Symposium on Prospects in the Physics of Discrete Symmetries IOP Publishing
Journal of Physics: Conference Series 447 (2013) 012034 doi:10.1088/1742-6596/447/1/012034

7



only with threshold corrections taken into consideration. In both case we obtain effects in the
percent range which none of the previously proposed partial treatments can fully account for.
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