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Abstract. A brief overview of the recent advancement in the microscopic study of the
interacting boson model (IBM) is given. A new nucleon-boson mapping method has been
proposed recently, that derives the IBM Hamiltonian based on the self-consistent mean-field
model with the microscopic energy density functional (EDF). The mean-field total energy surface
computed with a given EDF is mapped onto the analogous energy expectation value in the boson
condensate, thereby the energy spectrum and the transition rates are generated. Since the EDF
framework allows an accurate global description of nuclear intrinsic properties, the IBM is
derived in a unified way, basically for any situation of low-energy quadrupole collective states
of nuclei. The basic notion of the new mapping technique is sketched.

1. Introduction
Since its advent in the mid-1970s, the interacting boson model (IBM) of Arima and Iachello
[1] has made tremendous successes in the study of low-lying collective states of medium-heavy
and heavy nuclei. The ingredients of the IBM are monopole s and quadrupole d bosons, which
correspond respectively to collective nucleon-pairs with angular momenta Jπ = 0+ and 2+. The
boson Hamiltonian is composed of only essential interactions acting among the bosons, and
measurable quantities like energy spectrum and electromagnetic transition rates are obtained
through the diagonalization of the Hamiltonian, either numerically or analytically when the
Hamiltonian is written as a particular combinations of interaction terms (dynamical symmetry)
[1]. Despite its success, however, the IBM has lacked in the microscopic foundation (and hence
the predictive power) since the parameters of the boson Hamiltonian have been determined only
from the phenomenological fit to the known experimental data.

From a microscopic point of view, the IBM system represents a vast truncation of the full
Hilbert space of nuclear shell model, and conventionally the parameters of the boson Hamiltonian
have been calculated by associating the matrix element of a given fermion operator in the
truncated shell-model space, comprising collective S and D (plus G, if needed) pairs, to the
matrix element of the corresponding boson operator in the sd boson space [2–4]. Since a
nucleus is consisting of protons and neutrons, the proton-neutron version of the IBM (IBM-
2) has been introduced as a natural consequence, that is composed of neutron (proton) sν

(sπ) and dν (dπ) bosons [2, 3]. The number of neutron (proton) bosons, denoted here as Nν

(Nπ), equals the number of the collective pairs of valence neutrons (protons) outside of an inert
core. Although the shell-model derivation of the IBM has worked out in many realistic cases of
spherical vibrational and γ unstable systems [4, 5], since the underlying shell-model configuration
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becomes too complicated to be handled with the simple truncation scheme like the generalized
seniority, the unified framework of deriving IBM Hamiltonian for general situations including
rotational deformed system has long been missing.

Recently a novel robust way of deriving the IBM Hamiltonian has been developed, in
conjunction with the self-consistent mean-field model based on the microscopic energy density
functional (EDF) [6, 7]. In this technique, a given boson Hamiltonian has been fixed so that the
energy expectation value of the nucleon many-body Hamiltonian in the mean-field intrinsic state
with varying deformation is mapped onto the analogous energy expectation value in the boson
condensate. The self-consistent mean-field method with a fixed EDF parametrization allows an
accurate global description of the nuclear bulk properties and collective excitations, e.g., mass,
radii, deformation, shell structure, giant resonance, . . . etc. [8], and can be thus exploited as a
starting point from which the IBM Hamiltonian is constructed.

In this contribution, the basic notion of the new fermion-boson mapping technique is reviewed
and we shall demonstrate how it works by taking a simple example. This contribution is based
on Refs. [6, 7, 9] but discusses only a few essential results. For a complete review of the proposed
methodology and its various extensions, the reader is referred to Ref. [10].

2. Formulation
To construct the boson Hamiltonian for general situations associated to various types of
deformation, the energy surface of the collective deformation variables can be appropriate to start
with. The energy surface is generated with a set of the constrained self-consistent mean-field
methods, such as Hartree-Fock, Hartree-Bogoliubov or Hartree-Fock-Bogoliubov models, etc.,
using a microscopic energy density functional. The mean-field solution of the total energy surface
at each collective coordinate (β, γ), denoted here as E(β, γ) = 〈ΦF (β, γ)|ĤF |ΦF (β, γ)〉 with |ΦF 〉
being the corresponding intrinsic wave function, are obtained through the minimization of the
total energy normally as a sum of kinetic energy, a given model of EDF, pairing functional
and Coulomb energy with spurious center-of-mass motion being subtracted. The constraint
means the one for the mass quadrupole moment associated to the deformation variables of the
geometrical model (β,γ) [11]. The effective interaction for the particle-hole channel are typically
of the Skyrme [12, 13] and the Gogny [14] types, and other parameterizations based on the
relativistic mean-field Lagrangian [15]. Note that, in this framework, only the total energy at
the level of the mean-field approximation is of relevance here. This means that neither collective
potential energy surface nor mass parameters are considered explicitly and that any symmetry
projection is not performed.

To associate the energy surface obtained through the EDF calculation to the analogous energy
surface in the boson system, the so-called coherent-state framework [16] is used. The coherent
state represents the intrinsic state of the boson system and is given as the following boson
condensate |ΦB〉

|ΦB〉 =
1√

Nν !Nπ!
(λ†

ν)
Nν (λ†

π)Nπ |−〉 (1)

with |−〉 being inert core, and λ†
ρ (ρ = ν or π) reads

λ†
ρ =

1√
1 + β2

ρ

[
s†ρ + βρ cos γρd

†
ρ0 +

1√
2
βρ sin γρ(d

†
ρ+2 + d†ρ−2)

]
. (2)

The IBM analogue of the mean-field energy surface is obtained as an expectation value of the
boson Hamiltonian 〈ΦB|ĤB|ΦB〉. The variables βρ and γρ in Eq. (2) are equivalent to geometrical
quadrupole deformation (β, γ). Since the following discussion is restricted to isoscalar motion
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and both neutrons and protons are supposed to have the same shape due to their strong coupling,
βν = βπ ≡ βB and γν = γπ ≡ γB can be the first good approximation. The variables (βB, γB)
can be related to the geometrical variables (β,γ) in the following way:

βB = Cβ and γB = γ, (3)

the former of which comes from the difference in the model space [16], the fact that the IBM is
comprised of only valence nucleons while the collective model entire nucleus. Thus, βB is always
larger than β with C ≥ 1. The latter relation in Eq. (3) implies that the angle γ should have
the same physical meaning in both models. One can then map each point of the microscopic
energy surface E(β, γ) onto the IBM analogue of the mean-field energy surface. This requires
that the following approximate equality be satisfied over a certain range of the deformation (β,
γ) corresponding to the low-energy excitation (typically up to several MeVs from the minimum).

〈ΦF (β, γ)|ĤF |ΦF (β, γ)〉 ∼ 〈ΦB(βB, γB)|ĤB|ΦB(βB, γB)〉, (4)

which means that the boson energy surface should be calculated to be identical in topology
around the mean-field minimum to the microscopic energy surface as much as possible 1. By
mimicking the basic topology of the microscopic energy surface most relevant to the low-energy
excitation, effects of the essential ingredients of nuclear many-body system, e.g., Pauli principle
and nuclear force, are expected to be incorporated into the IBM system by renormalizing them
in the values, and/or the boson-number dependence, of the strength parameters.

For the boson Hamiltonian ĤB, the possible simplest but the most essential form can be
taken

ĤB = εn̂d + κQ̂ν · Q̂π (5)

where n̂d = n̂dν+n̂dπ stands for the d boson number operator, which drives nucleus into spherical
shape, and the second term the quadrupole-quadrupole interaction between neutron and proton
bosons, which makes dominant contribution to deformation, with quadrupole operator being
Q̂ρ = s†ρd̃ρ + d†ρsρ + χχ[d†ρ × d̃ρ](2). ε, κ, χν and χπ are parameters to be determined from the
mapping. The boson Hamiltonian could be more general, but the simplified form Eq. (5) already
embodies rich aspects of quadrupole collective states. The energy spectra and transition rates
are obtained through the diagonalization of the mapped Hamiltonian in the laboratory frame.

3. Transition from spherical vibrational to deformed rotational states
The examples for the microscopic energy surfaces are shown on the left-hand side of Fig. 1 for
axially deformed Sm isotopes, obtained through the HF+BCS method solved in a coordinate
space [17] with the parametrization Skyrme SkM* [18] and the density-dependent zero-range
pairing. One finds in the figure that the energy surfaces of the 146,148Sm nuclei, which are in
the vibrational regime, exhibit the minima close to the origin. Coming to the transitional nuclei
150,152Sm, the minimum departs from the origin to β ≈ 0.3 and also looks flat in β. Even larger
deformation (β ≈ 0.35) is suggested in the 154,156Sm nuclei, where the minimum becomes well
isolated being very sharp with respect to both β and γ. The mapped IBM energy surfaces on
the right-hand side of Fig. 1 reproduce the topology of the microscopic energy surface around
the minimum and the overall systematic trend with N .

If one looks at the resultant spectra in Fig. 2, the basic empirical features are reproduced:
lowering of yrast levels with N , the phase-transitional rapid changes in the side-band levels at
N ≈ 88 or 90. The present model well describes the vibrational spectra around N ≈ 86, being

1 For technical details behind the mapping the reader is referred to Refs. [7, 10].
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Figure 1. (Color online) To-
tal (β, γ) energy surface of
146−156Sm isotopes. On the
left-hand side (SkM*) shown
are microscopic energy sur-
faces with Skyrme SkM* in-
teraction, while on the right-
hand side the mapped IBM en-
ergy surfaces. The minimum
is identified by the filled cir-
cle. βF and γF stand for the
geometrical deformation vari-
ables.

close to the U(5) limit of IBM [1], and the typical rotational band around N ≈ 92, or the SU(3)
limit of the IBM [1]. It is also worth noting that the result of the level energy systematics
correlates with the variation of the deformation properties with neutron number indicated by
the microscopic energy surface in Fig. 1.
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At this point, one could notice in Fig. 2 that the rotational moment of inertia for deformed
nuclei with N ≥ 92, calculated in the IBM, underestimates to a large extent the experimental
data. The problem is highlighted in Fig. 3, where excitation energies calculated in the
microscopic IBM (energy bands on the left-hand side in each panel (a) and (b), denoted as
“w/o”) are much larger than the experimental [19] values. A reason for this deviation of the
moment of inertia can be the limited degrees of freedom in the IBM consisting of only s and d
bosons. Nevertheless, as far as the result of the energy surface mapping in Fig. 1 is concerned, the
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Figure 3. (Color online) Ro-
tational bands of axially de-
formed (a) 154Sm and (b) 232U
nuclei. The calculated spectra
with (w/) and without (w/o)
the L̂ · L̂ term are compared
with experiment [19].

configuration of sd bosons appears to be rather sufficient. Thus, it would be more likely [9], that
the problem occurs due to fact that the boson system differs in its rotational property from the
nucleon system (see [9] for details). To settle the problem, we have then proposed to introduce
an extended mapping procedure, that includes a specific rotational dynamics with non-zero
angular frequency, in addition to the mapping of the energy surface with zero angular frequency
(cf. Eq. (4)). The rotational dynamics could be incorporated through the standard cranking
approximation [20]. Instead of the Hamiltonian ĤX (X = F,B), the following Hamiltonian
(with axial symmetry)

Ĥ ′
X = ĤX − ωL̂y, (6)

where L̂y and ω are the y component of the total angular momentum and cranking frequency,
respectively, should be minimized. Given the values of the strength parameters already derived
through the mapping of Eq. (4), the response (or the energy shift of the system due) to rotational
cranking should be approximately identical between fermion and boson systems at a particular
point on the βγ surface, such as the equilibrium (β(e),γ(e)):

∆〈Φ′
F (β(e), γ(e))|Ĥ ′

F |Φ′
F (β(e), γ(e))〉 ∼ ∆〈Φ′

B(β(e)
B , γ

(e)
B )|Ĥ ′

B|Φ′
B(β(e)

B , γ
(e)
B )〉, (7)

where |Φ′
X〉 represents the solution of Ĥ ′

X in Eq. (6) at the equilibrium (β(e),γ(e)). To this end,
we have further proposed to add the term to the boson Hamiltonian Eq. (5), that corrects the
moment of inertia but does not alter the topology of the energy surface [9]. Such term should
be of the form L̂ · L̂, with L̂ = L̂ν + L̂π being the angular momentum operator. In practice the
approximate equality of Eq. (7) can be fulfilled by matching the cranking moment of inertia in
the intrinsic state of IBM at the equilibrium (β(e),γ(e)) to the one resulting from the mean-field
calculation, leading to the coupling constant of the L̂ · L̂ term [9].

To see the impact of the L̂ · L̂ term on rotational band, we compare in Fig. 3 the energy levels
calculated with the L̂ ·L̂ term with those without the term for strongly deformed 154Sm and 232U
nuclei as examples. By the inclusion of the L̂ · L̂ term, the agreement between theoretical and
experimental rotational bands is remarkably improved for the nucleus 154Sm so does for 232U.
It has to be stressed here that there is no adjustment to the experiment. It has been shown as
well [9] that the effect of the L̂ · L̂ term is particularly important for axially deformed rotational
nuclei but is normally much less for weakly deformed and γ-soft systems.

Given the results presented in Figs. 2 and 3, as well as in a number of applications [10]
not shown here, we have come to the conclusion that the IBM can be derived in a unified
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way for various situations of the low-energy quadrupole collective states, ranging from spherical
vibrational to strongly deformed rotational states, etc.

4. Summary
In this contribution, a novel robust way of deriving the IBM Hamiltonian from the self-consistent
mean-field model with microscopic EDF has been overviewed. By the proposed method, the
basic collective excitation modes of nuclei are reproduced: not only vibrational and transitional
states but the rotational deformed state. Particularly the latter point should more or less
concern the question raised in the past by Bohr and Mottelson [21], as to whether the IBM
is justified in the microscopic description of the rotational motion of deformed nuclei. While a
conclusive answer to this question has still been missing, the present work sheds more light upon
and should provide a new insight into this old problem. In practical applications, the IBM can
be considered as an effective theory to solve complex many-fermion problems for heavy-mass
system, which would be computationally much more costly with a large-scale calculation, and
is granted a predictive power for the spectroscopy of heavy exotic nuclei.
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