This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

The following article is Open access

Study of bicontinuous phase in (TTAB+pentanol)/water/n-octane reverse micellar system using positron lifetime spectroscopy

, and

Published under licence by IOP Publishing Ltd
, , Citation K Chandramani Singh et al 2013 J. Phys.: Conf. Ser. 443 012046 DOI 10.1088/1742-6596/443/1/012046

1742-6596/443/1/012046

Abstract

A phase diagram of (TTAB+pentanol)/water/n-octane has been mapped by using optical method. It exhibits a reverse micellar (L2) phase extending over a wide range of concentrations of the constituents. To investigate the fine structure of the L2 phase, a series of (TTAB+pentanol)/n-octane ternary mixtures having initial concentrations of (TTAB+pentanol) (1:1) in n-octane as 35%, 50% and 65% by weight were prepared. In each of these mixtures, positron lifetime measurements were performed as a function of the concentration of water, using a standard lifetime spectrometer. At water concentrations of 11.8%, 8.5% and 8.4% by weight respectively for the above systems, the o-Ps pick-off lifetime τ3 shows an oscillatory behaviour while I3 representing the Ps formation exhibits an abrupt change. These changes in the positron annihilation parameters have been explained on the basis of onset of bicontinuity in the microemulsion phase. The positron annihilation technique thus suggests the existence of droplet-like and bicontinuous structures in the L2 phase which is otherwise considered optically to be a single phase as the system remains clear and isotropic throughout this phase. Supporting evidence has been provided by the electrical conductivity measurements performed in these systems. These results are presented in this paper.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/443/1/012046