This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:

The following article is Open access

Helium implanted RAFM steels studied by positron beam Doppler Broadening and Thermal Desorption Spectroscopy

, , , , and

Published under licence by IOP Publishing Ltd
, , Citation I Carvalho et al 2013 J. Phys.: Conf. Ser. 443 012034 DOI 10.1088/1742-6596/443/1/012034

1742-6596/443/1/012034

Abstract

Reduced Activation Ferritic/Martensitic steels are being extensively studied because of their foreseen application in fusion and Generation IV fission reactors. To mimic neutron irradiation conditions, Eurofer97 samples were implanted with helium ions at energies of 500 keV and 2 MeV and doses of 5x1015-1016 He /cm2, creating atomic displacements in the range 0.07–0.08 dpa. The implantation induced defects were characterized by positron beam Doppler Broadening (DB) and Thermal Desorption Spectroscopy (TDS). The DB data could be fitted with one or two layers of material, depending on the He implantation energy. The S and W values obtained for the implanted regions suggest the presence of not only vacancy clusters but also positron traps of the type present in a sub-surface region found on the reference sample. The traps found in the implanted layers are expected to be HenVm clusters. For the 2 MeV, 1016 He/cm2 implanted sample, three temperature regions can be observed in the TDS data. Peaks below 450 K can be ascribed to He released from vacancies in the neighbourhood of the surface, the phase transition is found at 1180 K and the peak at 1350 K is likely caused by the migration of bubbles.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/443/1/012034