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Abstract. We explore the possibility to study the quantum dynamics of Dirac fermions in
presence of a cosmic string by introducing a conical topological defect in gapped graphene
in the presence of a Coulomb charge. When the Coulomb charge exceeds a certain critical
strength, quantum instability sets in. Below the critical regime and for certain values of the
system parameters, the allowed boundary conditions in gapped graphene cone can be classified
in terms of a single real quantity. Observables such as local density of states, scattering phase
shifts and the bound state spectra are dependent on the value of this real parameter, which has
to be determined empirically. For a supercritical Coulomb charge, we analyze the system with
a regularized potential as well as with a zigzag boundary condition and find the effect of the
sample topology on the observable features of the system.

1. Introduction

The study of the topological properties of lower dimensional quantum systems show remarkable
properties in various physical systems [1, 2, 3]. In the presence of a topological defect
such as a cosmic string, whose exterior space-time has a topology, the dynamics of Dirac
fermions exhibit novel nonperturbative quantum features such as inequivalent quantizations
[2]. Though these features are theoretically interesting, it is difficult to devise an experiment
with cosmic strings which will exhibit such quantum effects. In 2004 the experimental
fabrication of monolayer graphene [4, 5, 6] offered a chance to observe the effects of topological
defects [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] in the
laboratory. The low energy excitations in pristine graphene obey a 2D massless Dirac
equation[27, 28, 29, 30, 31, 32, 33]. However violation of sublattice symmetry in graphene
due to various impurities or short distance effects can lead to a mass gap in the system
[34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. When a conical topological
defect is introduced in such a system, some nontrivial holonomies [9, 10, 16] arise. The boundary
conditions associated with the holonomies can be realized by introducing a suitable flux tube,
analogous to a cosmic string, passing through the origin [2, 52, 53, 54, 55, 56, 57]. In our analysis,
such a flux tube shall be used to model the conical topological defect on the 2D graphene sheet.
Thus the gapped graphene cone in presence of an external Coulomb impurity offers a possibility
to study the inequivalent quantization of massive Dirac fermions in the presence of cosmic
strings.
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Figure 1. Hexagonal lattice structure of graphene and the Brillouin zone

The external Coulomb charge in a gapped graphene system can either be sub or supercritical.
Here the critical charge refers to that value of Coulomb potential strength when the system
dives into the negative energy continuum [58, 59, 60] indicating the quantum instability. The
two different regimes of Coulomb potential are characterized by markedly different behaviour of
the local density of states (LDOS) [58].

For a subcritical Coulomb charge impurity in the presence of the flux tube, we shall show
that the quantization of the gapped graphene system is not unique and an additional parameter
is required to fully characterize the boundary conditions at the origin, analogous to what was
obtained for Dirac fermions in 2+1 dimensional gravity with a topological defect [2, 52].We shall
also show that the experimental observables such as the LDOS, phase shifts and the bound state
energies depend explicitly on that new parameter.

In the supercritical region the external Coulomb charge in gapped graphene cone can produce
strong nonperturbative electric field effect [37, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72], at a relatively small value Ze ∼ 1, due to the Fermi velocity vF ≈ 106m/s in graphene, which
is 300 times smaller than the velocity of light. For supercritical charge, we study the system
with a regularized Coulomb potential[58, 59] and also with a zigzag edge boundary condition.
We shall show that the critical charge in gapped graphene cone is renormalized to a value higher
than that of the gapless case and the value depends on the gap, the cut off parameter, the
topology of the system and also on the boundary conditions used to obtain the quasibound
state spectra in the supercritical region. It will be shown that with the increase in gap or cut
off parameter the critical charge in presence of zigzag edge boundary condition increases more
rapidly than in presence of a regularized Coulomb potential.

2. Low energy excitations in graphene cone with a Coulomb charge

Graphene has a hexagonal honeycomb lattice structure which is formed by two inter penetrating
triangular sublattices [5, 6, 27, 29, 30] A and B. The low energy gapped excitations of planer
graphene have minimum energy eigenvalues at the six vertices of the hexagonal first Brillouin
zone of graphene and these vertices are known as the Dirac points. Among the six Dirac points,
two are inequivalent [5, 6, 27, 29, 30]. We consider them to be situated at the opposite corners of
the Brillouin zone and we denote their wave vectors by K+ and K−. The low-energy properties
of the quasiparticle states in graphene near the Dirac point having valley index K+, can be
described by the Dirac equation

HΨ = [−i(σ1∂x + σ2∂y) +mσ3] Ψ = EΨ, (1)
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wherem denotes the Dirac mass generated due to sublattice symmetry breaking, E is the energy
eigenvalue and we have set h̄ = vF = 1. The Hamiltonian acts on the array of the slowly varying

envelope functions Ψ =

(
ΨK+,A

ΨK+,B

)
and the Pauli matrices σ1,2,3 act on the pseudospin indices

A,B.
To study the effect of topology on this system, we consider to introduce local defects in the

hexagonal lattice structure of graphene[9, 10] to form a cone.

Figure 2. Formation of a cone from plane graphene sheet by cut and paste procedure.

The conical topology gives rise to nontrivial holonomies for the pseudoparticle wavefunctions
in graphene. When a cone with angle of deficit 2nπ

6 is formed, where n can take only discrete
values 1, 2, 3, 4, 5, the angular boundary condition obeyed by the Dirac spinor as it goes around
a closed path is given by

Ψ(r, θ = 2π) = ei2π(1−
n
6
)
σ3
2 Ψ(r, θ = 0). (2)

Here (r, θ) denotes the polar coordinate of the lattice points.
When the cone is formed by removing odd number of wedges of angle 2π

6 an additional phase
shift appears affecting the valley indices of the wave function in the boundary condition[9, 10,
11, 18]. The states with valley index K− will be affected in the same manner as the states with
valley index K+ but there will be a relative phase difference of 180◦ between them (for details
see [73]). Therefore this boundary condition can be described by involving a τ2 matrix in it
where the matrix τ2 operate on the valley indices[9, 10, 74]. When n is even, this off diagonal
matrix does not play any role and the exponential factor appearing in the boundary condition
just gives ±1 depending on the value of n. We diagonalize the matrix τ2 for all allowed odd
values of n. As a result the valley indices of the electronic states become mixtures of K+ and
K−. Then the angular boundary condition satisfied for all values of n, by a branch of electronic
states having a fixed Fermi index, is given by [9, 10]

Ψ(r, θ = 2π) = ei2π[±
n
4
σ0+(1−

n
6
)
σ3
2
]Ψ(r, θ = 0). (3)

Here σ0 is an identity matrix which acts on the pseudospin indices A,B. Ψ =

(
ΨA,K ′

ΨB,K ′

)
where

K ′ is a mixture of K+ and K−.
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Figure 3. Graphene cone = planar graphene + flux tube

The effect of these holonomies can be modelled by introducing a fictitious magnetic flux tube
[13] passing through the apex of the cone. The magnetic vector potential modifies the boundary
condition on a Dirac spinor as

Ψ(r, θ = 2π) = eie
∮

�A· �dsΨ(r, θ = 0). (4)

Here �ds is a line element on the circumference of the cone at a distance r from the apex, i.e.

�ds = êθ r(1− n

6
)dθ. (5)

Substituting (5) in (4) and assuming that the component Aθ of the magnetic vector potential is
independent of the angle θ, we have from Equation(3)

Aθ =
1

er
[±

n
4σ0

(1− n
6 )

+
σ3
2
]. (6)

Thus an external Coulomb charge localized at the apex of the gapped graphene cone can be
equivalently described by a suitable combination of electric charge and magnetic flux tube [74].
Replacing the ordinary derivatives in the Hamiltonian by the corresponding covariant derivatives,
the Dirac equation for the low energy excitations of gapped graphene cone in presence of a
Coulomb charge at its apex is given by

HΨ(r, θ) =

⎛
⎝ m− α

r
∂r − i

r(1−n
6
)∂θ ±

n
4

r(1−n
6
) +

1
2r

−∂r − i
r(1−n

6
)∂θ ±

n
4

r(1−n
6
) − 1

2r −m− α
r

⎞
⎠( ΨA(r, θ)

ΨB(r, θ)

)

= E

(
ΨA(r, θ)
ΨB(r, θ)

)
. (7)

Let

Ψ(r, θ) =
∑
j

(
Ψ
(j)
A (r)

Ψ
(j)
B (r)

)
eijθ, (8)
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where j is half-integer. Substituting (8) in (2), we obtain that the leading short distance behavior
of the wavefunction is given by

Ψ
(j)
A,B(r) ∼ rβ−

1

2 where β =
√
γ2 − α2 and γ =

(j ± n
4 )

(1− n
6 )
. (9)

From (9) we can see that when |α| exceeds |γ|, β becomes imaginary. Therefore, the eigenstates
Ψ
(j)
A (r) and Ψ

(j)
B (r) becomes wildly oscillatory and have no well defined limit as r → 0. For

massive excitations the critical coupling αc corresponds to that value of α for which E = −m.
When m = 0, the value of αc is equal to the minimum allowed value of γ and depending on
the magnitude of Dirac mass and boundary conditions αc increases gradually from γ. It will be
shown that the critical coupling for the gapped graphene cone explicitly depends on the angle
of the cone and also on the product of gap and cutoff parameter.

Depending on the strength of the external Coulomb charge compared to that of the critical
charge of a gapped graphene cone with a particular opening angle, the effect of the charge
impurity on the cone can be analyzed in two separate regions: subcritical and supercritical.

3. Inequivalent quantizations for graphene cone in the presence of a subcritical

Coulomb charge

In this Section we discuss the bound and scattering state solutions of the Dirac fermions in a
gapped graphene cone in the presence of a subcritical Coulomb charge impurity. To get the
solutions following [37], we consider the ansatz

Ψj
A(ρ) =

√
m+ Ee−

ρ

2 ρβ−
1

2 [F (ρ) +G(ρ)] (10)

and
Ψj

B(ρ) =
√
m− Ee− ρ

2 ρβ−
1

2 [F (ρ)−G(ρ)], (11)

where ρ = 2κr, κ =
√
m2 − E2, β =

√
γ2 − α2, γ =

(j±n
4
)

(1−n
6
) and total angular momentum j

takes all half integer values. Bound states occur when the wavefunctions reduce to polynomials
i.e. when

β − αE

κ
= −N, (12)

where

N =

{
0, 1, 2, ..., when γ > 0,
1, 2, 3...., when γ < 0.

(13)

The corresponding bound state spectra is obtained as

Ep =
m sgn(α)√
1 + α2

(p+β)2

. (14)

Here the energy should be of the same sign (positive or negative) as α because otherwise the
value of N will become negative and in our range of interest, it is not allowed (for details see
[73]).

In the scattering state sector the parameter κ =
√
m2 − E2 is purely imaginary, i.e.

κ = −ik [37], where k is defined as k =
√
E2 −m2. Consequently, the variable ρ also

becomes purely imaginary, ρ = −2ikr. Using the r → ∞ limit of the scattering states the
scattering matrix is obtained as

S(k) = (2ik)
2iαE

k

(
γ + imα

k

)
(
β − iEα

k

) Γ
(
1 + β − iαE

k

)
Γ
(
1 + β + iEα

k

)eiπ(β+iαE
k ). (15)
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From Equation(15) it can be seen that the poles of the S matrix determined by
(
1 + β − iαE

k

)
=

1 − N , where N is a nonzero positive integer and
(
β − iEα

k

)
= 0 when γ > 0, gives back the

corresponding bound states as expected.
The Dirac equation discussed in the previous section is valid only for low energy excitations.

Therefore the short range interactions produced by the conical defect as well as the Coulomb
charge impurity, cannot be incorporated as dynamical terms in the Dirac equation. However, a
suitable choice of boundary conditions can take into account the combined effect of those short
range interactions. In systems with unitary time evolution those allowed boundary conditions
can be determined using the well defined prescription due to von Neumann[75, 76, 77, 78]. Below
we recall the salient features of this idea.

A symmetric operator T with domain D(T ) ⊂ H is self-adjoint if and only if

T = T ∗ and D(T ) = D(T ∗).

where T ∗ denote the operator adjoint to T and H is the Hilbert space. To check whether T is
self-adjoint or not we consider the equations

T ∗φ+ = +iφ+

T ∗φ− = −iφ−.

Let n± denote the number of linearly independent square integrable solutions of the above two
equations respectively. The pair (n+, n−) are called the deficiency indices for the operator T .
The operator T can be classified in terms of the deficiency indices as follows:

1. T is essentially self-adjoint iff (n+, n−) = (0, 0).
2. T is not self-adjoint but has self-adjoint extensions iff n+ = n− = n �= 0.
3. If n+ �= n−,then T has no self-adjoint extensions.
If T admits self-adjoint extension, von Neumann’s prescription tells us that its domain of self

adjointness is given by

DU (T ) =

{
φ+ φ+ + Uφ−

∣∣∣∣φ ∈ D(T )
and U is a n× n unitary matrix

}
. (16)

We can see from Equation(2) that the angular part of Dirac operator H operates on a
domain Y (θ) which is spanned by the antiperiodic functions eijθ where j is a half integer and
the corresponding boundary condition is kept unchanged. The radial Dirac operator Hρ, given
by

Hρ =

⎛
⎝ ρ d

dρ
+
(
β − αE

κ

)
− (γ + mα

κ

)
(−γ + mα

κ

)
ρ d
dρ
+
(
β − ρ+ αE

κ

)
⎞
⎠ ,

is symmetric in the domain D0 = C∞0 (R
+) which consists of infinitely differentiable functions of

compact support in the real half line R+ and its adjoint operator H†ρ has the same expression
as Hρ but its domain can be different. Now to determine the domain of self-adjointness of the
Dirac operator H, consider the equations

H†Ψ± = ± i
l
Ψ±, (17)
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where l has the dimension of length. The total number of square integrable, linearly independent
solutions of Equation(17) gives the deficiency indices for H and they are denoted by n±.

To find the deficiency indices n± let us first consider the following.

Ψj
A±(ρ) =

√
m± i

l
e−

ρ

2 ρβ−
1

2 [F±(ρ) +G±(ρ)] (18)

and

Ψj
B±(ρ) =

√
m∓ i

l
e−

ρ

2 ρβ−
1

2 [F±(ρ)−G±(ρ)], (19)

where ρ = 2κ1r, κ1 =
√
m2 + 1

l2
, β =

√
γ2 − α2 and γ = (j±n

4
)

(1−n
6
) .

Using these expressions and proceeding as prescribed by von Neumann it can be shown that
ψA± and ψB± are square integrable everywhere provided 0 < β < 1

2 and for this parameter
range n± = 1 (for details see [73]).

Thus we have a one parameter family of self-adjoint extensions, labeled by a real parameter
z ∈ R mod (2π) which enters the low energy dynamics of the Dirac fermions of gapped graphene
cone through boundary conditions to ensure the unitary time evolution of the system. All the
physically interesting quantities such as bound state energies, scattering phase shifts and LDOS
depend on the choice of this self-adjoint extension parameter z. The parameter z cannot be
determined theoretically, but instead must be obtained empirically. It would be interesting to
see if there is any corresponding effect in the full tight-binding description of graphene. In terms
of the system parameters and the self-adjoint extension parameter z the spectrum is determined
by the equation

f(E) ≡
(

κ2

1 +m2

)β

(
1− β − αE

κ

)
Γ
(
1 + β − αE

κ

)
Γ (1− 2β)(

1 + β − αE
κ

)
Γ
(
1− β − αE

κ

)
Γ (1 + 2β)

=
ξ1cos

(
φ1 +

z
2

)
ξ2cos

(
φ2 +

z
2

) .
where √

m+
i

l
(P+ +R+) = ξ1e

iφ1

and

√
m+

i

l
(Q+ + S+) = ξ2e

iφ2 .

and P+, Q+, R+ and S+ are system parameter dependent constants (for detailed calculation see
[73]). Though the equation cannot be solved analytically, from a typical plot of f(E) it can be
obtained numerically.

We have used the following expression given in Equation(20) for LDOS during the plotting.

μ(E, r) =
4

πh̄vF

∑
j

|Ψ(j)(k, r)|2. (20)

We have plotted the energy dependence of LDOS at a distance close to the charge impurity
(r = 1.2). From these Figures we can observe that LDOS depend on the values of self-adjoint
extension parameter z and also on the topology of the system. Therefore measurement of LDOS
is a major experimental activity in graphene physics which should yield information about the
self-adjoint extension parameter and the topology of the system.
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Figure 4. (a)Plot of f(E) is shown for system parameters j = 3
2 , n = 1, α = 1.49 and m = 1.

The three horizontal line corresponds to the three different values of the self-adjoint extension
parameter z = 5,−0.4,−3. (b) Dependence of LDOS in the bound state sector of the gapped
graphene cone on the distance r from the external charge impurity is shown for three different
values of bound state energy corresponding to three different values of self-adjoint extension
parameter. Here the contribution from angular momentum channel j = 3

2 is shown and the
system parameters are n = 1, α = 1.49 and m = 1. We have assumed l = 1. (c) Plot of f(E) is
shown for two different values of n (1 and 3) with system parameters j = 1

2 , α = 0.28 andm = 1.
The three horizontal line corresponds to the three different values of the self-adjoint extension
parameter z = 5,−0.4,−3. The solid lines correspond to n = 3 and the dotted lines correspond
to n = 1. (d) Dependence of LDOS on the distance r from the external charge impurity is shown
for two different values of bound state energy corresponding to two different values of n with
the self-adjoint extension parameter z = −0.4. Here the contribution from angular momentum
channel j = 1

2 is shown and the system parameters are α = 0.28 and m = 1.

The scattering matrix S(k) for gapped graphene cone for the parameter range 0 < β < 1
2 is

given as

S(k) = (2ik)2i
αE
k

− ξ1 cos(φ1+
z
2
)

ξ2 cos(φ2+
z
2
)(2κ1)

2β(2κ)−2β 1+f2
1+f1

f1
Γ(1+2β)

Γ(1+β+iαE
k
)
+ f2

Γ(1−2β)

Γ(1−β+iαE
k
)

− ξ1 cos(φ1+
z
2
)

ξ2 cos(φ2+
z
2
)(2κ1)

2β(2κ)−2β 1+f2
1+f1

Γ(1+2β)

Γ(1+β−iαE
k
)
e−iπ(β+iαE

k
) + Γ(1−2β)

Γ(1−β−iαE
k
)
e−iπ(−β+iαE

k
)
,

where

f1 ≡
β + iαE

k

γ − imα
k

, f2 ≡
−β + iαE

k

γ − imα
k

. (21)

Thus we can see scattering phase shifts also depend explicitly on the self-adjoint extension
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Figure 5. (a)Dependence of LDOS on the distance r from the Coulomb impurity is shown for
two different values of self-adjoint extension parameter z = −0.2, 1 and a particular value of
E = 3 and with j = 1

2 , n = 3, α = 0.28 and m = 1. (b) Effect of topology on r dependence of
LDOS is shown for self-adjoint extension parameter z = −0.2, E = 3 and system parameters
α = 0.28, n = 0, 1, 3 and m = 1 considering contribution coming from the angular momentum
channel j = 1

2 . (c)Energy dependence of LDOS is shown for two different values of self-adjoint
extension parameter z = 5,−0.8 at a distance r = 1.2 from the external Coulomb impurity. The
system parameters used for the plot are α = 0.28 and m = 1 and contribution coming from the
angular momentum channel j = 1

2 is considered. (d) Effect of topology on the energy dependence
of LDOS is shown for self-adjoint extension parameter z = −0.8, angular momentum channel
j = 1

2 and system parameters α = −0.28, n = 1, 3 and m = 1

parameter z and the topology of the system. For each value of z (mod 2π), we have an
inequivalent set of the scattering data.

4. Effects of topological defects in the supercritical regime of gapped graphene

In the supercritical region β is always imaginary as the Coulomb potential strength α exceeds
the value of γ. We denote β = iη =

√
α2 − γ2. This region is marked by the quantum instability

in the system. Therefore we need to regularize the Coulomb potential to study the effect of an
external supercritical Coulomb charge on the gapped graphene cone. We shall also consider the
zigzag edge boundary condition in our analysis.

DICE2012 IOP Publishing
Journal of Physics: Conference Series 442 (2013) 012017 doi:10.1088/1742-6596/442/1/012017

9



Figure 6. (a)Phase shifts in the gapped graphene cone is shown for three different values
of the self-adjoint extension parameter z = 2,−0.2,−2 where the system parameters are
n = 1, j = 3

2 , α = 1.46, and m = 1. (b) Scattering phase shifts are shown for different angles
of the gapped graphene cone with the self-adjoint extension parameter z = −0.2 and system
parameters j = 1

2 , α = 0.28 and m = 1.

4.1. Regularized Coulomb potential

In presence of a regularized Coulomb potential the bound states can be extended until the
negative continuum E = −m is reached[58, 59]. The regularization of the Coulomb potential is
given by

V (r) =

{ −α/r, r > a,
−α/a, r ≤ a.

(22)

Here a is the minimum distance of the Dirac electron from the apex where the Coulomb charge
is placed and it is of the order of the lattice parameter. The Dirac equation for gapped graphene
cone is solved for the two different regions r > a and r ≤ a separately. Then we use the
continuity condition of the wave function at r = a to determine the quasibound state energy
spectrum which is given by

f(E) ≡ fr(E) = Arg[Γ(1 + 2iη)] (23)

where

fr(E) = Arg

[
Γ

(
1 + iη − Eα

κ

)]
+Arg

[
γ − α

κ
(m− E) + iη

]
+ ηln(2κa)

+ Arg

⎡
⎣γ − αJ|γ+ 1

2
|(α)

J|γ− 1

2
|(α)

− iη
⎤
⎦ + pπ

and p is a positive integer (for details see [73]).
As the regularized potential allows the bound states to dive into negative energies and the

critical charge of a gapped graphene cone refers to that value of a Coulomb potential for which
E = −m, we have

αc = γ +
π2

2γlog2[2mγCa]
(24)
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where

C = exp

⎡
⎣−2ψ(1) − J|γ− 1

2
|(γ)

γ(J|γ− 1

2
|(γ)− J|γ+ 1

2
|(γ))

⎤
⎦ (25)

for the region near the critical potential. From Equation (24) we can see when ma→ 0, αc ≈ γ
which agrees with the result obtained for massless case [74]. Also for n = 0, γ = j and for
j = 1

2 , the dependence of the critical charge on the gap and the cutoff parameter agrees with
that obtained in [59].

4.2. Zigzag edge boundary condition

To find out the energies of the quasistationary states formed in the supercritical region now we
use the zigzag edge boundary condition Ψj

B(a) = 0, where a is a distance from the apex, of the
order of the lattice scale in graphene. The quasibound state energy spectrum is given by

f(E) ≡ fz(E) = Arg[Γ(1 + 2iη)] (26)

where

fz(E) = Arg

[
Γ

(
iη − Eα

κ

)]
+Arg

[
γ +

α

κ
(m+ E)− iη

]
+ ηln(2κa) + pπ

and p is a positive integer (for detailed calculation see [73]). This quasibound state energy

Figure 7. (a)Quasibound state energy spectrum with zigzag edge boundary condition and
regularized Coulomb potential. Here the blue line represents Arg[Γ(1 + 2iη)] and the dashed
and the solid line represents fz(E) and fr(E) respectively. (b)Dependence of |Ψ(r)|2 on the
distance r from the charge impurity placed at the apex of the gapped graphene cone is shown
for both the zigzag edge boundary condition and regularized Coulomb potential. The values of
energy are obtained from the quasibound state energy spectrum.

spectrum for zigzag edge boundary can be compared with the spectrum obtained for the
regularized potential and the effect of the two different boundary conditions on the spectrum
can be observed from Fig.(7).

Proceeding in the same manner as for regularized potential, we can see with zigzag edge
boundary the critical charge of the system is given by

αc = γ +
π2

2γlog2[2mγaexp(−2ψ(1))] . (27)

Here also from Equation (27) we can see when ma → 0, αc ≈ γ which agrees with the result
obtained for massless case [74]. The critical charge has been shown to depend on the nonzero
mass, cutoff parameter and the different opening angles of the gapped graphene cone. The
dependence of the critical charge on ma is compared for two different boundary conditions.
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Figure 8. Dependence of critical
charge on the nonzero mass and cutoff
parameter are shown for both zigzag
edge boundary condition and regularized
Coulomb potential for different opening
angles of the gapped graphene cone.
The dotted lines show the dependence
for zigzag edge boundary condition and
the solid lines show the dependence for
regularized Coulomb potential.

5. Conclusion

Inequivalent quantization arising from self-adjoint extensions is one of the earliest predictions
of quantum mechanics. To experimentally realize that prediction, here in our analysis we have
considered the opportunity provided by the massive Dirac fermions in gapped graphene in the
presence of a conical defect and an external Coulomb impurity. The combination of this conical
defect as well as the Coulomb impurity results in short distance interactions in the system. For a
subcritical charge impurity, the effect of these short range interactions can be modelled through
appropriate choice of boundary conditions which are labelled by a single real parameter and
satisfies the requirement of a unitary time evolution. We have shown that the observables such
as LDOS, scattering phase shifts and bound state energies depend explicitly on this parameter.
This feature of gapped graphene cone agrees well with the prediction made for Dirac fermions
in a plane in the presence of a cosmic string and thus the study of the gapped graphene cone
considered here have established its importance for being more amenable to empirical analysis.

The supercritical regime of the Coulomb impurity have been analyzed with a regularized
Coulomb potential as well as with a zigzag boundary condition. Quantum instability
characterizes this regime and we have shown that the quasibound state spectra and the
probability amplitude depend explicitly on the number of sectors removed from a planar
graphene to form the cone. In addition, the dependence of the critical charge on the product
of the Dirac mass m and the cutoff parameter a has been obtained. Though the nature of
the dependence is similar for both the regularized Coulomb potential and the zigzag boundary
condition but in the latter case the critical charge increases more rapidly with ma than the
former case.

Thus the quantum dynamics of massive Dirac fermions of a graphene sample have been
studied in presence of a conical topology and an external Coulomb charge and the study has
offered a possibility to experimentally observe the inequivalent quantization of Dirac fermions
in the presence of a string defect and many other interesting supercritical phenomena. More
details of the analysis presented here can be found in [73].
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