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Abstract. Hydrogen atom is studied as a quantum-classical hybrid system, where the proton
is treated as a classical object while the electron is regarded as a quantum object. We use a
well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics
for the electron and the proton is compared to their full quantum dynamics. The electron
dynamics in the hybrid description is found to be only marginally different from its full quantum
counterpart. The situation is very different for the proton: in the hybrid description, the proton
behaves like a free particle; in the fully quantum description, the wave packet center of the proton
orbits around the center of mass. Furthermore, we find that the failure to describe the proton
dynamics properly can be regarded as a manifestation of the fact that there is no conservation
of momentum in the mean-field hybrid approach. We expect that such a failure is a common
feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer
type.

1. Introduction

Though quantum mechanics and its ensuing developments have been verified by all the
experiments to be the correct description of the physical universe, classical physics is still a useful,
convenient, and sometimes irreplaceable tool to describe many systems. For example, it is very
convenient and also accurate to describe the motion of the Earth around the Sun with Newton’s
equations of motion instead of the Schrodinger equation. There are even various situations,
where one finds it convenient and necessary to separate one system into two subsystems: one
subsystem is described quantum mechanically and the other is described classically. This gives
rise to quantum-classical hybrid systems.

Quantum-classical hybrid systems come in three main categories: (i) In unifying gravity
with the other fundamental interactions, one simply gives up quantizing gravity and proposes
a unification theory where gravity is treated as a classical field and the other three forces as
quantum fields [1, 2, 3]. (7)) In the standard Copenhagen interpretation of quantum mechanics,
one always deals with a hybrid system, where a quantum system interacts with a classical
measuring apparatus. In such a case, the classical apparatus can cause the collapse of the
wave function of the quantum system, which is still beyond mathematical description [4]. (%)
The hybrid system in this category is typified by systems in the field of solid state physics and
chemistry [5, 6, 8]. In the Born-Oppenheimer approximation [9], the nuclei are treated classically
because their motion is much slower due to their large masses while the electrons are treated
as quantum objects. This kind of systems are now also arising in nano-science [10, 11], where
a classical detector of tens of nanometers in size interacts with a quantum object. For these
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systems, the interaction from the classical subsystem does not cause dramatic changes in the
quantum subsystem such as the collapse of the wave function. For systems in this category, we
call them Born-Oppenheimer systems.

We are only interested in the Born-Oppenheimer hybrid systems. There have been many
different approaches proposed to describe these hybrid systems|5, 6, 7, 8, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22]; some of these approaches are shown to be equivalent to each other [23]. There
are discussions on what conditions need to be satisfied by a self-consistent theory for a hybrid
system[24, 25, 26, 27, 28]. In this work, we use hydrogen atom as a concrete example to explore
the possible inconsistency or inadequacy of a theory for hybrid systems. As is well known, the
full quantum mechanical description of hydrogen atom, the simplest Born-Oppenheimer system
in nature, can be found analytically. This full quantum description can be used to benchmark
the hybrid description.

We use the mean-field approach that was proposed in Ref. [11] to describe hydrogen atom.
Its theoretical structure was fully analyzed in Ref. [27]. With this approach, we find that the
electron dynamics is very similar to the corresponding full quantum description. However, we
find that the proton in the hybrid approach behaves like a free particle, very different from its
full quantum description where the wave packet center of the proton orbits around the center of
mass. This failure to describe the proton motion properly is rooted in the fact that there is no
conservation of momentum in the hybrid approach. Our further analysis shows that this failure
or inadequacy in the hybrid approach is intrinsic: it is caused by the loss of entanglement of the
electron and proton dynamics in the mean-field hybrid approach. As this loss of entanglement
exists in all known hybrid approaches, we expect that all the hybrid approaches fail to describe
properly the dynamics of the classical subsystem.

2. Full quantum solution for hydrogen atom
Before we study the hydrogen atom as a hybrid system, we briefly review its general full quantum
solution and then apply it to a special case, where the electron is described by a wave packet
that moves and evolves around a circle [29)].

The Schrédinger equation for a hydrogen atom can be written as

[
V're - 7V7.p + V(|r€ - rp|) w(revrpa t)? (1)

.0
ih—(re, rp, t) = 5
p

ot B 2Mme

where m,, (r,) is the mass (coordinate) of the proton, m. (r¢) is the mass (coordinate) of the
electron, and V(|r. — 7p|) is the Coulomb potential that depends only on the distance between
the proton and the electron. As done in every textbook, we introduce the relative coordinate r
and the coordinate of the center of mass R,

MeTe + Myt

T=Te—Tp, Rz%, (2)
where M = m, + m,, is the total mass of the hydrogen atom. In these new coordinates, the
Schrédinger equation (1) becomes

h* h2v2 vV R,r.t 3
_m ’r‘+ (‘Ir’) ¢( , T )7 ( )

Vh——
R 21

0
th—y(R,r,t) =
CU(R 1)
where p = memy/(me + my) is the reduced mass. So, the wave function of a hydrogen atom
can be written as

Y(R, 7, t) = Pr(r, t)he(R,1) (4)
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where ¥, (r,t) and 1.(R,t) satisfy, respectively,

2
g () = = V20 0)+ V() (), o)
1 y(Ry1) = ﬁv?wR ) ()
Mo Vel t) = Top Y RVLIL

This shows that the motion of a hydrogen atom can be separated into two independent parts:
Yy (7, t) describes the motion of a particle in a Coulomb potential V (|r|) while ¢.(R,t) describes
the motion of a free particle. However, this by no means implies that the motions of the electron
and the proton can be described by two independent wave functions, which will become much
clearer in the later analysis.

We go back to the coordinate system of 7. and 7,. The density distribution of the electron
is

e(re )2 = / (7, )2 e (R )Pl

MeTe + MpTy ;

= [ 1onre = rp O Ploc" T o),
= [1orre = rp OPIlre = 2 (e = ), 0P, )
-/ |wr<a:,t>|2wc<re—%w,tnzdw, ™)

where we have plugged in Eq. (2). Similarly, the proton density is given by

e, t / [, )Py — e, 1) P (8)

The above results are very illuminating. As the center of mass motion is free particle-like, we
assume that 1.(R,t) is a Gaussian wave packet with width o. So, the density of electron is just
the density of the relative motion |t,.(7,t)|? coarse-grained with a Gaussian function of width
Mo /m, =~ o. In contrast, the density of proton is the density of the relative motion |¢,.(r,t)|?
coarse-grained with a Gaussian function of a much larger width Mo/m,. =~ 18370. In other
words, the electron density and the proton density are very similar to each other but the proton
density looks about 1837 times fuzzier.

In the reference frame where the hydrogen atom is motionless, the center of the wave packet
of electron is

) =32 [l (r)Prar = T2 ), )

where (r) is the center of the wave packet for the relative motion. The center of the wave packet
of proton is

Me

(rp) = =221, (10)

We now consider a special case. In this case, the initial state of the center of mass of the
hydrogen atom is described by a Gaussian function

2
V(R t=0) = <2m12)1/4exp [ ‘ﬁ’ } (11)
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with o being the width; the relative motion at the beginning is depicted by the following wave
function [29],

> n —n)?
?/)r(r,t = O) = # Z €xp |:():| un(n—l)(n—l)(r) ) (12)
=1

(2mo2)1/4 o 402

where n and o5 are the mean and the width of the Gaussian distribution, respectively, and
is the standard energy-eigenstate for the hydrogen atom[30]

o 2 K (n_l_ 1)' —r/nap 2r : 2[+1 2r m

with L being associated Laguerre polynomial, Y the spherical harmonics, and ap the Bohr
radius.

The ensuing dynamics of the circular wave packet in Eq.(12) under the influence of the
Coulomb potential V' (|7|) has been studied in detail in Ref.[29]. For the sake of self-containment,
we summarize their results here. The wave packet is localized on a circle with radius ~ n2ap.
This wave packet remains localized and moves on the circle for several Tkepler, the period of the
corresponding classical motion on the same circle. At time Tipread ~ 10TKepler, the spreading
of the wave packet becomes so severe that it distributes rather uniformly on the circle. This
is characterized by (r) = 0. The wave packet can recover its localized form and revive at
Trev = (7/3)TKepler, and repeats its previous dynamics afterwards. With this in mind, it is
straightforward to picture the quantum dynamic motion for both the electron and the proton
in this special case.

For the electron, its wave packet is the wave packet in Eq.(12) coarse-grained with the
Gaussian wave packet for the center of mass motion (see Eq.(7)). As long as the width o
is not too large, its wave packet dynamics should be very similar: it is localized and orbits on a
circle of radius ~ n2ap before Tipread- During this period, the wave packet center (r.) oscillates
periodically with its amplitude decreasing. After Tipreaq and before Tiey, the wave packet spreads
over the circle, which is characterized by (r.) = 0. This dynamics repeats itself after Tyey.

For the proton, its wave packet center has a similar motion as the electron’s according to
Eqgs.(9,10). The difference is that the proton moves in the opposite direction and (r,) varies
with time on a circle of much smaller radius. However, the dynamics of the proton wave packet
is very different. The wave packet of the proton is the result of coarse-graining with a Gaussian
function of large width Mo/m,. ~ 18370 (see Eq.(8)). This large-size coarse-graining makes
the wave packet much less localized. At the same time, the proton moves on a much smaller
circular orbit (about 1837 times smaller). With these two factors combined, it is clear that the
wave packet of the proton is always spread and smeared out over the entire circular orbit. No
distinct peak and other structure can be seen. The three different time scales of the wave packet
dynamics, Tkepler, Lspread, and Tieyv, which are used to characterize the distinct features of the
wave packet at different times, become rather meaningless for the proton.

3. Hybrid dynamics in hydrogen atom
We now treat the hydrogen atom as a hybrid system, where the proton is regarded as a classical
object while the electron is treated quantum mechanically. With the approach in Ref.[11], the
hybrid Hamiltonian for the hydrogen atom is

h2 p;

H = (pe(re, )] = 53—V, + Vire = rp])lgelre, ) + 5
P

(14)

2me
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We expand the wave function |p.) in a set of complete orthonormal basis,

|pe(Te, t) Z‘PJ ) (15)

With the classical canonical Hamiltonian structure introduced by Heslot[31], we have the
following Poisson brackets,

{¢j, 05} =i6k/h, {rpj,ppk} = ji, (16)
{eis iy = {rpjsrpe} = {Ppjs P} = 0, (17)

where 7,,;(pp;) is the jth component of coordinate (momentum) vector of the proton. With these
Poisson brackets, we can obtain the hybrid equations of motion,

. d _ h? 9
ihlee(re, 1)) = | =5 V3, + V(e —rp)| pelre 1)) (18)
. _OH _pp
rp - app - mp ’ (19)
OH h?
re TV(re —mp)lpe(re,t)) . (20)

b, = _airp = _v'rp<906(7‘e, t)

Note that p, and 7, are independent dynamical variables in the above equations of motion
while 7. is just some external parameter. The dynamical variables for the electrons are ¢;’s in
Eq.(15).

Similar to the full quantum treatment, we focus on the case where the initial state for the
electron is given by the circular wave packet in Eq.(12). In terms of the electron coordinate 7.,
the circular wave packet has the following form,

2

TL —-n
@e(rea t= 0) 1/4 Z eXp ) ]un(n—l)(n—l)(re - 'rpO) ) (21)

27m

where 7, is the initial position of the proton. Since the proton is much more massive than
the electron, its motion is rather slow and will not cause quantum transition between different
quantum states of the electron. In other words, the weight before each eigenstate w,(,—1)(n—1) Will
not be changed by the proton motion. This is just the famous quantum adiabatic theorem[32] or
the essence of the Born-Oppenheimer approximation. As a result, the dynamics of the electron
wave packet is just the same as the electron dynamics in the full quantum description. The only
difference is that the wave function of the electron in this hybrid approach is not coarse-grained.

In contrast, the proton is very different: the classical motion of a proton in the hybrid
treatment does not agree with the motion of the wave packet center (r,) for any meaningful

period of time. Let us examine the right hand side of Eq.(20). E. = (@e| — %V%e +V(re—
Tp)|pe) is the electron energy. It is clear that the eigen-energy E,, for each eigenstate gy, is
independent of the proton position 7,. As mentioned above, the proton motion is so slow that it
will not cause quantum transition between different electronic states ;. This means that E,
is independent of r,. As a result, the right hand side of Eq.(20) is zero and the momentum of the
proton does not change with time. So, the proton in the hybrid dynamics is like a free-particle,
motionless or moves along a straight line. In contrast, the wave packet center (r,) makes circular
motion around the center of mass before time Typeaq. This shows that the hybrid approach fails
to describe the proton dynamics properly.
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This failure to describe the proton dynamics can be illustrated from a different angle. Our
analysis shows that this failure essentially has the root in the fact that there is no conservation
of momentum in the hybrid dynamics of hydrogen atom. We define the total momentum for
this system as

P = P, + (PelPelpe) - (22)

In the adiabatic limit, we know that p, is a constant while (p¢|p.|¢e) changes with time
significantly at least for the first several Tkepler- This means that the total momentum P
changes with time. The easiest way to appreciate this result to set the initial momentum p,,
of the proton be zero. Then according to Eqgs.(18,19,20), the proton remains motionless while
the electron wave packet moves on the circle and its change of momentum d{p.|p,|¢.)/dt has a
finite value for the first several Tkepler-

4. Self-consistency of hybrid approaches
The above discussion leads to immediate questions, such as, “How general is the conclusion that
the hybrid approach is inadequate in describing the dynamics of the classical subsystem?”, “Is
it possible that hybrid approaches are intrinsically flawed?” There is already some attempt to
answer these questions [28]. Again we do not do general analysis here; we instead use hydrogen
atom as an example and hope that our analysis with hydrogen atom may shed some light on
the general questions.

First, the analysis on hydrogen atom can be generalized to multi-nucleus systems. The
electronic states clearly do not depend on the position of the center of mass of all the nuclei.
When the nuclear center of mass moves slowly as in the usual case, it will not cause quantum
transition between different electronic states. As a result, the center of mass of all the nuclei feels
no force and there is no conservation of the total momentum. It seems that this shortcoming can
be remedied by moving the derivative in Eq.(20) inside the bra-ket, that is, replacing Eq.(20)
with - 1

By =gy = ~lpere I, |-

This is nothing but the well-known Ehrenfest equation[33, 34]. It is easy to show that the total
momentum is conserved if this Ehrenfest equation is used instead of Eq.(20). As the Ehrenfest
equation is derived from Eq.(20) with an argument that appears right but is fundamentally flawed
upon close examination[34], we now have a very intriguing situation: the total momentum is
not conserved for the “correct” Eq.(20) while the total momentum is conserved for the “flawed”
Eq.(23). This may be regarded as an indication that there exists intrinsic inconsistency in a
hybrid theory.

Secondly, there is loss of quantum entanglement in any hybrid theory. In the full classical
treatment, a pair of independent dynamical variables {r.(t), r,(t)}, one for the electron and
the other for the proton, are enough to specify completely the dynamics of the system. In the
hybrid approach, there also exists such a dynamical pair {r,(t), pe(Te,t)}, for the proton and
the electron, respectively, which can completely describe the whole dynamics.

In contrast, in the full quantum mechanical approach, there exists no such a dynamical pair,
one for the electron and the other for the proton, with which the full quantum dynamics is
completely determined. It is true according to Eq.(4) that the full quantum dynamics can be
specified by two independent wave functions. However, one wave function is for the relative
motion and the other is for the center of mass, instead of for the electron and the proton,
respectively. The motion of the electron and the proton is always entangled together. This
entanglement between the electron and the proton is manifested at two levels. For the first
level, it is the entanglement understood in the usual sense that one can not have the total
wave function as the product of the electron wave function and the proton wave function,

2e Vi +V(re — rp) |pe(Te, ) . (23)
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Y(t) = e(Te, t)Pp(rp, t). Maybe temporarily at a given moment, one can have this kind of direct
product but not for any meaningful period of time. For the second level, which is much weaker,
the total wave function can not be the functional of two independent dynamical functions, one
for the electron fe(r.,t) and the other for the proton fy,(r,,t). In other words, we can never
write the total wave function as ¥(t) = ¢[fe(re,t), fp(rp,t)]. To see this clearly, we introduce
the reduced wave functions for the electron and the proton. Similar to the densities, they are
also coarse-grained from the wave function for the relative motion,

we Te,t /wT wc R t drp = /wr Z, t ¢C( - Mx t)d (24)

Dp(p,t) /wr )be(R, t)dr, = /wr ., )e(ry — %w,t)dw. (25)

It is clear that these two functions contain all the dynamical information that we can have for
the electron and the proton. However, as they are obtained from the coarse-graining, these two
reduced wave functions alone can not specify the total wave function ¢ (¢). The entanglement
between the electron and the proton at the second level is immediately destroyed in the hybrid
approach, where the dynamics of the whole system can be determined completely by the proton
dynamics 7, and the electron dynamics ¢.(rc,t). Although our analysis is done for hydrogen
atom, it can be generalized. In any hybrid approach, there is no entanglement between the
quantum subsystem and the classical subsystem at the second level. This loss of entanglement
is general and intrinsic.

5. Conclusion

In summary, we have studied the dynamics in a hydrogen atom with two different approaches.
One is the full quantum theory that can be found in the standard textbook and the other is the
hybrid mean-field approach, where the proton is regarded as a classical object and the electron is
a quantum object. We have found that there is only marginal difference for the dynamics of the
electron between these two approaches. However, the dynamics for the proton is very different
between the two: the proton in the hybrid approach behaves like a free particle, not moving or
moving along a straight line; the wave packet center for the proton in the full quantum approach
can make circular motion for a limited time. These differences are summarized in Table 1.

full quantum approach hybrid approach
electron dynamics coarse-grained 1, (7, t) U (r,t)
proton dynamics (rp) moves around center of mass behaves as a free particle
conservation of total momentum | no conservation of total momentum

Table 1. Comparison between the full quantum dynamics and the hybrid dynamics of hydrogen
atom

The failure of proper description of the proton dynamics is the manifestation that there is no
conservation of total momentum in the hybrid approach. We acknowledge that this failure may
just be to the interest of theorists as there is no experimental way to probe the proton dynamics.
For systems with more than one nuclei, the non-physical artifacts caused by the hybrid treatment
may also be not essential to experiments. The reason is that the hybrid approach may only fail to
capture the proper motion for the center of mass of the nuclei. For the relative motions between
the nuclei, the hybrid approach may be adequate. All the vibrational and rotational frequencies
for the relative nuclear motion are computed by treating the nuclei as classical objects. If this
approximation can not capture physics that can be measured experimentally, it would be found
and known for a long time.
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